Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контроль роста микроорганизмов

    Культивирование микроорганизмов может быть непрерывным и периодическим. При периодическом процессе весь объем питательной среды загружают в аппарат сразу, добавляют посевной материал и при оптимальных условиях продолжают процесс до тех пор, пока не накопится нужное количество биомассы или определенного метаболита. В ходе периодического культивирования изменяется темп роста культуры, ее морфология и физиология. За время культивирования меняется состав среды — уменьшается концентрация питательных веществ, увеличивается содержание метаболитов. С физиологической точки зрения периодическое культивирование невыгодно. В ходе его возникает также ряд технологических трудностей — циклический ход операций, сменные режимы, что затрудняет контроль и регуляцию процесса. [c.69]


    При интенсивном перемешивании культуральной среды в процессе ферментации часто происходит ее вспенивание. Это может привести к переувлажнению фильтра в отверстии, через которое воздух выходит из биореактора, и уменьшению его потока, а также к попаданию в реактор посторонних микроорганизмов. Для контроля пенообразования используют химические пеногасители или механические сбиватели пены. Однако в присутствии химических реагентов может ухудшаться перенос кислорода, а иногда происходить ингибирование клеточных ферментов, что уменьшает скорость роста микроорганизмов. Кроме того, если пеногасители не удалять, они могут загрязнять конечный продукт. Проблему вспенивания можно решить, если оставить в верхней части биореактора достаточно большое пустое пространство, в котором лопались бы пузырьки воздуха. Правда, в этом случае рабочий объем реактора уменьшится примерно на 25%. [c.358]

    Контроль роста микроорганизмов [c.82]

    Еще один параметр, от которого зависит успех ферментации, - температура. Если она ниже оптимальной, то рост микроорганизмов замедляется и интенсивность метаболизма снижается. Если же, напротив, температура слишком высока, то может произойти преждевременная индукция синтеза белка, если он находится под контролем температурочувствительного репрессора, или индукция белков теплового шока, что активизирует клеточные протеиназы и снизит выход белкового продукта. [c.355]

    В процессе биологической очистки сточных вод важно обеспечить достаточное содержание фосфора для поддержания роста микроорганизмов. Бытовые сточные воды обычно имеют избыток фосфатов, а некоторые промышленные стоки характеризуются недостатком питательных веш еств из-за высокого содержания углеводов и углеводородов. При осуществлении контроля над загрязнением фосфорными соединениями водных источников основная цель заключается в предотвращении насыщения их питательными веществами во избежание нежелательного роста водорослей и других засоряющих водоемы растений. [c.39]

    Уравнение (24.20) можно использовать для расчета области значений pH в реакторе, пригодной для роста микроорганизмов. Эффективность удаления нитрата можно оценить по снижению щелочности системы в процессе микробиологического роста. Так как определять щелочность легче, чем нитрат, то измерение щелочности предлагается в качестве метода автоматического контроля процесса автотрофной денитрификации. Этот метод может быть также применен для контроля процессов нитрификации и гетеротрофной денитрификации. [c.312]


    При проектировании сооружений биохимической очистки сточных вод и анализе их работы обычно используют следующие расчетные параметры скорость биологического окисления, стехиометрические коэффициенты для акцепторов электронов, скорость роста и физические свойства биомассы активного ила. Изучение химических изменений во взаимосвязи с биологическими превращениями, происходящими в биореакторе, дает возможность получить достаточно полное представление о работе сооружения. Для анаэробных систем, к которым можно отнести анаэробные фильтры, такие сведения нужны, чтобы обеспечить оптимальное значение pH среды, являющегося основным фактором нормальной работы очистных сооружений. В некоторых аэробных системах, например, в таких, в которых происходит нитрификация, контроль pH среды также необходим для обеспечения оптимальной скорости роста микроорганизмов. Для закрытых очистных сооружений, вошедших в практику в конце 60-х годов, в которых используется чистый кислород (окси-тенк), изучение химических взаимодействий стало необходимым не только для регулирования pH, но и для инженерного расчета газопроводного оборудования. [c.331]

    Для практических целей важно осуществлять контроль за ростом микроорганизмов и подавлять развитие нежелательных форм. Активность микроорганизмов может, например, приводить к порче продуктов и развитию заболеваний. Поэтому бывает необходимо подавить микроорганизм или приостановить его рост. Агенты, вызывающие такие последствия, называют соответственно бактерицидными и бактериостатическими. Характер действия антимикробного агента часто зависит от концентрации. К тому же следует помнить, что для некоторых микроорганизмов эти вещества, наоборот, могут быть источниками углерода и энергии. Если необходимо убить все микроорганизмы в (на) объекте, то говорят о стерилизации. Для стерилизации применяют антимикробные агенты с широким спектром действия. [c.82]

    Чистота выделенной культуры микроорганизмов должна быть тщательно проверена. Это осуществляется обычно несколькими способами визуальным, микроскопическим контролем и высевом на ряд питательных сред. При визуальном контроле просматривается рост микроорганизмов по штриху на поверхности скошенной агаризованной среды. Если рост по штриху неоднороден, культура загрязнена. Такой контроль возможен только для культур, способных расти на поверхности плотных сред. [c.80]

    Важной особенностью предписаний является их требование к ограничению времени фильтрации определенными пределами с целью предотвратить избыточный рост микроорганизмов до окончательной фильтрации, который вызывает образование эндотоксинов. Восемь часов — предельно допустимое время между вводом воды в смесительную емкость и стерилизацией последней порции фильтруемой жидкости. Кроме того, любые используемые в системе фильтры и мембраны должны быть либо очищены, либо заменены после 8 ч их работы. Размеры пор конечного мембранного фильтра не должны быть больше 0,45 мкм, даже если продукт высоковязкий и с трудом фильтруется. Прежде чем готовый продукт пустить в продажу, он должен пройти лабораторный контроль на содержание пирогенных веществ, отдельных частиц и на стерильность. Для контроля на пирогенность следует брать пробы из первого и последнего флаконов, заполненных в данной партии, а также из любых флаконов, при заполнении которых имел место значительный перерыв. При проверке на стерильность необходимо исследовать контрольные флаконы в каждой партии. В общем случае испытания на стерильность проводят методом мембранной фильтрации, описание которого приводится в разд. 7.11. Число флаконов, которые должны подвергнуться испытаниям на стерильность, может меняться, однако для больщих партий (состоящих из более 500 флаконов) их минимальное число должно составлять 20 (или не менее 2 %). Партия определяется как серия одинаково заполненных герметически закупоренных флаконов, приготовленных таким образом, что вероятность нарушения стерильности для них одинакова. [c.188]

    Уже в самом начале развития микробиологии стало известна, что одни микроорганизмы могут подавлять рост других. Наиболее важным результатом интенсивных исследований в этой области было, наверное, открытие антибиотиков и разработка способов их применения в клинике. Большое внимание привлекла к себе и сама возможность использования одних микроорганизмов для регуляции численности популяции других благодаря действию антагонистических или конкурентных механизмов. К сожалению, в ходе этих исследований почти ничего важного для сельского хозяйства открыто не было. Тем не менее сама идея такого биологического широкомасштабного контроля про" должает привлекать внимание ученых. [c.371]

    Если по какой-либо причине рост клеток, например, замедлился, то это сразу покажет датчик концентрации биомассы, поскольку вымывание (уход) клеток из реакционного сосуда будет преобладать над их приростом и концентрация микроорганизмов понизится. В этом случае централизованный контроль замедлит приток питательной среды и равенство восстановится. Если снизится кислотность, то управляющие сигналы повысят кислотность вводимой среды и т. д. Мы видим, что регулирование происходит по типу обратной связи. Излишне говорить о том, что приборы подобного рода имеют огромное будущее. [c.135]


    Процент подавления с — а 100, где С—зона роста коло-микроорганизмов С ний гриба в контроле а — зона роста колоний гриба по препарату. [c.82]

    Исследования показали, что прометрин в дозе 3 кг/га и особенно 6 кг/га незначительно угнетает рост и развитие гетеротрофных микроорганизмов по сравнению с контролем. Прометрин в дозе [c.113]

    Полимер должен противостоять разрушению хлором или другими окислителями, добавляемыми в питающий раствор для контроля роста микроорганизмов, которые разрушают и (или) загрязняют мембраны. Ацетат целлюлозы продолжительное время стоек при содержании хлора в питающем растворе, равном 1 мг/л. Большая часть полиамидов, за исключением, например, полипиперазинамидов (см. гл. 4), подвергаются воздействию хлора по —ЫН-группе (N-xлopиpoвaниe) или при галогенировании ароматических колец [129]. В таких случаях предварительная обработка должна включать и операцию дехлорирования. [c.72]

    При выборе приборов-пробоотборников, планировании и осуществлении контроля следует учитывать, что полученные результаты зависят от ряда факторов. В первую очередь, на результат влияет тип выбранного пробоотборника. Экспериментальные исследования показали, что количественные результаты, полученные при одновременном отборе проб воздуха различными пробоотборниками, отличаются в несколько раз [38]. Кроме того, получаемые результаты зависят от условий окружающей среды, а также от самой процедуры пробоотбора. Так, например, пониженная влажность воздуха может приводить к высушиванию поверхности агара и, следовательно, гибели микроорганизмов, а при повышенной влажности воздуха конденсация влаги на поверхности агара может привести к тому, что вместо отдельных колоний на поверхности питательной среды будет наблюдаться сплошной рост микроорганизмов, что сделает практически невозможным правильный учет результатов. Несоблюдение иэокинетичности пробоотбора (равенства скоростей воздуха в пробоотборнике и в исследуемом потоке) также может привести к занижению или завышению результатов [8]. Важную роль играет также объем пробы, который, с одной стороны, должен быть достаточно большим, чтобы обеспечить ее репрезентативность, но, с другой стороны, не должен быть излишним, так как большой объем пробы приводит к высыханию питательной среды и гибели микроорганизмов, или к появлению на поверхности питательной среды слишком большого количества колоний, которое невозможно сосчитать. [c.772]

    Высокая активность сохранялась через час и через сутки после приготовления. Через 2 суток после приготовления материал оказался малоактивным, в 19 случаях из 21 обнаружен густой рост микроорганизмов, аналогичный контролю. Введение декамина в количестве 0,1 % почти не отразилось на противомикробной активности эпоксидного материала. Декамин в количестве 0,5% усилил антимикробную активность материала, ко- [c.96]

    На чистых культурах испытание препаратов проводилось по методу введения ацетоновых растворов препаратор в жидкую агари-зированную питательную среду (КДА), после разлива и застывания которой, в чашках Петри, и на поверхность этой среды проводили посев соответствующих тест-объектов. Процент подавления микроорганизмов определяли по формуле Эббота в сравнении с контролем (посев микроорганизмов на питательную среду без введения препаратов), где рост мицелия грибов и чистых культур бактерий принимали за 100%. [c.82]

    Первый связан с инактивацией антибиотика и высевом его в соответствующую питательную среду. Например, биологический контроль бензилпенициллина и полусинтетических препаратов, полученных на его основе, производится следующим образом. В пробирки, содержащие тиогликолевую среду, вносят фермент пенициллиназу в количестве, способном полностью инактивировать пенициллин. Пробирки с пенициллиназой выдерживают 2— 3 сут при 37°С для контроля стерильности фермента, затем в них вносят раствор пенициллина. Пробирки разделяют на две группы, одну группу выдерживают при 37°, а другую при 24° в течение 5 сут. Ежедневно наблюдают за возможным ростом микроорганизмов. [c.274]

    Возможность осуществления процесса культивирования микроорганизмов на средах с низкими остаточнылш концентра ЦИЯЛ1И лшнеральных элементов зависит в основном от точностд устройства, поддерживающего постоянство концентрации био массы в суспензии, и от оперативности контроля за химическим составом среды. При незначительном увеличении концентрации клеток в суспензии или задержке поступления пи-тательного раствора динамическое равновесие между поступлением элементов и потреблением их клетками нарушается, и рост микроорганизмов начинает лимитироваться минеральным субстратом. Поэтому в реальных условиях для стабилизации процесса в питательные растворы вводят некоторое избыточное количество элементов, и расчет питательной среды проводится по формулам [c.62]

    Любой вирус (варион) состоит из нуклеиновой кислоты (НК), защищаемой капсидой (цилиндрической или сферической оболочкой белкового типа, иногда с включением липидов и сахаров). Капсида выполняет также функцию взаимодействия с клетками чужого организма, способствуя проникновению вирусной НК внутрь клетки-хозяина и запуску там синтеза новых вирусных молекул. В случае ВИЧ сложность заключается в том, что в чужом организме он встраивается в оетки самой иммунной системы (в лейкоциты, фагоциты, лимфоциты), призванной бороться с патогенными микроорганизмами. И как только зараженный организм включает в действие защитную иммунную систему, вместе с размножением собственных иммунных клеток начинается бурный рост числа ВИЧ, и клетка-хозяин теряет генетический контроль над биопроцессами. Иммунные силы (сопротивляемость) организма, таким образом, слабеют, и у больных СПИДом возрастает вероятность заражения другими инфекциями - туберкулезом, пневмонией, лейкозами и т.д. [c.152]

    Все данные, представленные в табл. 162, получспы в сравнительно чистой, медленно движущейся прибрежной морской воде, подходящей для роста как макро-, так и микроорганизмов. В загрязненнш или разбавленной морской воде, в арктических водах, в условиях быстрого потока и в других случаях, когда кислород присутствует, а обрастание невозможно, скорости коррозии могут быть выше. Кроме того, приведенные результаты относятся к травленык образцам без поверхностной окалины с определенным отношением площадей боковых и лицевых сторон (0,056) и не имевшим контакта с другими металлами. Более высокое отношение площади боковых и лицевых сторон может увеличить средние коррозионные потери. Гальванические эффекты, вызванные большой площадью окалины, контактом с другим металлом или изменением свойств электролита, могут нарушать биологический контроль и усиливать питтинг. Всякие другие отклонения от нормальных условий также могут влиять на механизм корразии. [c.452]

    Многие химикаты, использующиеся для борьбы с фитопатогенами, представляют опасность для животных и человека они накапливаются в природных экосистемах и долго сохраняются в них. Поэтому было бы целесообразно заменить химические способы подавления патогенных микроорганизмов биологическими, более благоприятными для среды. Один из биологических подходов к контролю фитопатогенов заключается в создании трансгенных растений, устойчивых к одному или нескольким патогенным микроорганизмам (этот подход обсуждается в гл. 18). Были также предприняты попытки использовать в качестве инструмента биоконтроля бактерии, стимулирующие рост растений. Такие бактерии синтезируют соединения, которые можно использовать для уменьшения ущерба, наносимого растениям фитопатогенами. В их числе - сидерофоры и антибиотики, а также различные ферменты. Впрочем, несмотря на всю перспективность этого подхода, почти все исследования пока проводились в лабораторных условиях, ростовых камерах или в оранжереях. Окончательный же вывод о пользе той или иной стратегии, основанной на использовании како-го-то конкретного механизма, можно будет сделать только после полевых испытаний. [c.321]

    Сточная вода распределяется по фильтру, скапывает по щебенке вниз, собирается там и выводится. Снизу через фильтр подается постоянный поток воздуха, что обеспечивает эффективную вентиляцию. При разработке этой конструкции считалось необходимым осуществлять принудительную вентиляцию реактора, однако, как позднее выяснилось, разность температур загрузки фильтра, сточной воды и окружающего воздуха достаточна для того, чтобы обеспечить смену воздуха и реаэрацию воды в процессе ее стекания. Капельный фильтр обеспечивает эффективную адгезию микроорганизмов, достаточный контакт между водой и биопленкой и хорошую реаэрацию воды. Наиболее серьезный недостаток капельного фильтра —это сложность контроля за ростом биопленки. Именно поэтому при проектировании и эксплуатации биофильтров должны строго соблюдаться определенные требования. В реакторах старых конструкций (с очень низкой нагрузкой) контроль осуществляется биологически. Биопленка развивается без какого-либо торможения, что приводит к локальной кольматации. Кольматация препятствует прониканию кислорода к биомассе, в результате чего биомасса загнивает и разлагается, так что проток воды опять становится возможным. Высшие организмы, такие как черви и личинки, также способствуют деградации биомассы и удалению ее с биопленки. В итоге реактор может стать инкубатором для насекомых, особенно фильтровых мошек, что является достаточно неприятным обстоятельством. По этой причине капельные фильтры с низкой нагрузкой используются не слишком широко. Следует еще доба- [c.216]

    Необходимым условием роста и развития живых организмов любого уровня организации является регулируемая ими самими сбалансированность процессов клеточного метаболизма. При этом с одной стороны, гармонично сопряжены скорости разрушения отдельных клеточных структур и биополимеров с синтезом клеточных материалов de novo. А с другой - обеспечен баланс обмена веществ между организмом и средой окружения. Основные закономерности регуляции метаболической активности у организмов различной степени сложности (эволюционной) принципиально одинаковы. Однако у одноклеточных, не имеющих сложной тканевой цитодифференцировки и многофакторной системы гуморальной регуляции, они не имеют такой множественности уровней метаболического контроля, как у многоклеточных. Поэтому для выявления общих, базовых принципов клеточной регуляции часто используют модели микроорганизмов. [c.72]

    Биологическая обработка — самый эффективный способ удаления органических веществ из городских сточных вод. Действие биологических очистных систем основано на том, что смешанные культуры микробов разлагают и удаляют коллоидные и растворенные органические вещества из раствора. Параметры среды, в которой находятся микроорганизмы в очистном сооружении, постоянно контролируются например, активный ил в достаточном количестве снабжается кислородом для поддержания аэробных условий. Сточная вода содержит биологическую пищу, питательные вещества для роста и микроорганизмы. Лица, незнакомые с очисткой сточных вод, часто спрашивают, откуда получают специальные биологические культуры. Многочисленные разновидности бактерий и простейших, присутствующие в бытовых сточных водах, служат на очистных установках в качестве исходной биологической затравки. Затем посредством тщательного контроля расхода поступающих сточных вод, рециркуляции микроорганизмов после их осаждения, снабжения кислородом и применения других способов удается вывести желательные биологические культуры, которые сохраняются для обработки загрязненных стоков. Биопленку на поверхности загрузки биофильтра получают, пропуская сточную воду через фильтр. Через несколько недель фильтр может работать, удаляя органические вещества из сточной жидкости, орошающей фильтр. Активный ил в механической или диффузно-воздушной системе начинает действовать при включении аэраторов и подаче сточной воды. Первоначально необходима высокая степень рециркуляции отстоя со дна вторичного отстойника для сохранения в достаточном количестве биологической культуры. Однако через короткий промежуток времени созревает устойчивый активный ил, который эффективно извлекает органические вещества из сточной воды. При включении в работу анаэробного сооружения приходится преодолевать более существенные затруднения, так как метанообразующие бактерии, необходимые для протекания процесса брожения, немногочисленны в необработанной сточной воде. Кроме того, эти анаэробы растут очень медленно и требуют оптимальных условий окружающей среды. Пуск анаэробной установки может быть значительно ускорен при заполнении тенка сточной водой и засеве ее достаточным количеством бродящего ила из близлежащей очистной установки. Сырой осадок сначала подают с незначительной дозой загрузки, а для поддержания должного значения pH в метантенк в необходимых количествах вводят известь. Даже при этих условиях проходит несколько месяцев, прежде чем установка начинает работать на полную мощность. [c.84]

    Концентрация водородных ионов оказывает непосредственное влияние на биологические очистные системы, которые лучше всего работают в нейтральной среде. Аэрационные системы работают в диапазоне pH от 6,5 до 8,5. При pH более 8,5 микробная активность ингибируется, а при pH менее 6,5 метаболизм органических веществ, присутствующих в сточных водах, осуществляют в основном грибы. Обычно бикарбоиатно-буферная емкость сточной воды достаточна для противодействия росту кислотности и соответственно уменьшению значения pH, вместе с тем выработка микроорганизмами углекислого газа способстует регулированию щелочности сточной воды с высоким значением pH. Если при смешивании промышленных стоков с городскими сточными водами значение pH последних выходит за пределы оптимального диапазона, для их нейтрализации может потребоваться добавление химических соединений. В этом случае будет более правильным не искать способы контроля pH на городских очистных сооружениях, а требовать, чтобы промышленное предприятие до слива своих сточных вод в канализационную сеть предварительно проводт ло их обработку путем выравнивания состава и нейтрализации. [c.86]

    Доброкачественность гидролизатов, полученных от варок древесного сырья с илом, и их биохимическая пригодность для получения кормовых дрожжей оценивалась методом непрерывного культивирования микроорганизмов на опытных субстратах. На гидролизатах, полученных совместным гидролизом древесного сырья с активным илом, самыми урожайными оказались дрожжи Кандида скотти и Трихоспорон. Результаты опытов показали, что при одинаковой скорости роста, равной 0,27 ч , утилизация редуцирующих веществ дрожжами, культивируемыми на гидролизатах с добавками ила, вьше, чем в контрольных опытах. Выход биомассы дрожжей при выращивании на гидролизате, полученном при введении в аппарат 4 % ила к массе абс. сухой древесины, составил 58,4 % от содержания редуцирующих веществ или 117,3 % от контроля, а при введении 15 % ила — 59,0 % от содержания редуцирующих веществ или 118,5 % от контроля. Съем дрожжей с 1 т абс. сухой древесины соответственно на 36,6 и 15,8 кг выше по сравнению с контрольной варкой. Солевое питание при выращивании дрожжей на гидролизатах, приготовленных с добавками ила, можно сократить на 25—50 % без ущерба для выхода и качества дрожжей [203]. [c.103]

    Для многих микроорганизмов описано явление стимуляции прорастания спор при обработке слабыми дозами НММ. На некоторые грибы НММ оказывала стимулирующее действие даже в концентрации 1—1,5% [4]. В условиях нашего эксперимента НММ в концентрации 0,04М (менее 0,5%) не оказывала стимулирующего действия на прорастание спор V. dahliae, число жизнеспособных снор уменьшалось, очень резко (рис. 1). Небольшие экспозиции (15—30 мин.) почти не оказывали влияния на скорость роста колоний, полученных из обработанных НММ спор. Воздействие на споры в течение 2—4 час. замедляло рост колоний в 1,5—2 раза по сравнению с контролем. Аналогичное явление описано у хлореллы, где показано, что НММ резко тормозит клеточное деление [5]. НММ индуцировала большое количество карликовых ко.лоний. При экспозициях 2—4 часа число их составляло 30—40% от всех измененных колоний. Большая часть карликов при пересевах восстанавливала способность формировать колонии, близкие к исходному типу, меньшая — стабильно сохраняла карликовость. [c.335]


Смотреть страницы где упоминается термин Контроль роста микроорганизмов: [c.229]    [c.36]    [c.98]    [c.103]    [c.229]    [c.97]    [c.76]    [c.134]    [c.15]    [c.501]    [c.191]    [c.330]    [c.17]    [c.345]    [c.34]    [c.272]    [c.117]   
Смотреть главы в:

Микробиология -> Контроль роста микроорганизмов




ПОИСК





Смотрите так же термины и статьи:

Контроль роста

Рост микроорганизмов



© 2024 chem21.info Реклама на сайте