Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы конструктивного метаболизма

    Образ жизни прокариот состоит в постоянном воспроизводстве своей биомассы. Совокупность протекающих в клетке процессов, обеспечивающих воспроизводство биомассы, называется обменом веществ, или метаболизмом. Клеточный метаболизм складывается из двух потоков реакций, имеющих разную направленность энергетического и конструктивного метаболизма. Энергетический метаболизм — это поток реакций, сопровождающихся мобилизацией энергии и преобразованием ее в электрохимическую (Арн+) или химическую (АТФ) форму, которая затем может использоваться во всех энергозависимых процессах. Конструктивный метаболизм (биосинтезы) — поток реакций, в результате которых за счет поступающих извне веществ строится вещество клеток это процесс, связанный с потреблением свободной энергии, запасенной в химической форме в молекулах АТФ или других богатых энергией соединений. [c.79]


    В рамках разобранных выше основных способов питания, определяющих возможности существования прокариотных организмов, в мире прокариот обнаружено множество типов (форм) жизни. Тип жизни — понятие, отражающее, с одной стороны, специфику процессов энергетического метаболизма, с другой — специфику процессов конструктивного метаболизма, присущую определен- [c.111]

    Глава 10. Процессы конструктивного метаболизма [c.64]

    Многие микроорганизмы, используемые в промышленности, нуждаются для роста в наличии молекулярного кислорода, окисляя в процессе аэробного дыхания субстраты до двуокиси углерода и воды. Кроме того, О2 может включаться в процессы конструктивного метаболизма клеток, обеспечивая синтез ими и е к ото р ы X со ед и н е н и й. [c.139]

    Эндотермические процессы ассимиляции питательных веществ, идущие с поглощением энергии, часто называют анаболическими, а экзотермические процессы диссимиляций, связанные с выделением энергии,— катаболическими. Продукты, образующиеся в результате этих процессов, являются метаболитами, а все эти процессы в целом составляют обмен веществ — метаболизм. Синтез клеточных компонентов клетки обеспечивает конструктивный метаболизм, а энергию, необходимую для этих процессов,— энергетический метаболизм. [c.27]

    Помимо окисления для получения энергии молекулярный водород используется в конструктивном метаболизме. На 5 молекул Н2, окисленного в процессе дыхания, приходится 1 молекула Н2, затрачиваемого на образование биомассы  [c.383]

    Ферменты, восстанавливающие нитраты в конструктивном метаболизме, локализованы в цитоплазме клетки, а ферменты, восстанавливающие нитраты в энергетическом процессе, связаны со структурными элементами клетки, будучи встроенными в клеточные мембраны. [c.437]

    Кажется вполне вероятным, что автотрофный тип конструктивного метаболизма формировался параллельно с формированием аппарата для использования энергии света, поскольку на первом этапе эволюции энергетические и конструктивные процессы зависели от одних и тех же органических источников и, следовательно, прокариотные организмы одновременно были поставлены перед проблемой поиска новых источников энергии и углерода. [c.249]

    Известно восстановление сульфата до сульфида, входящего в состав серосодержащих аминокислот (цистин, цистеин, метионин), в конструктивном метаболизме большинства прокариот. Оно имеет место всегда при выращивании бактерий на среде, где источником серы служат сульфаты. Активность процесса ограничена потребностями клетки в серосодержащих компонентах, а они невелики. [c.350]


    Пути синтеза этих и других компонентов клетки подробно изложены в фундаментальных курсах биохимии. На некоторых закономерностях синтеза биополимеров и механизмах регуляции этих процессов мы остановимся в последующих главах, а здесь рассмотрим имеющий чрезвычайно важное для конструктивного метаболизма значение процесс азотфиксации. [c.67]

    Конструктивные и энергетические процессы протекают в клетке одновременно. У больщинства прокариот они тесно связаны между собой. Однако у некоторых прокариотных организмов можно выделить последовательности реакций, служащих только для получения энергии или только для биосинтеза. Связь между конструктивными и энергетическими процессами прокариот осуществляется по нескольким каналам. Основной из них — энергетический. Определенные реакции поставляют энергию, необходимую для биосинтезов и других клеточных энергозависимых функций. Биосинтетические реакции кроме энергии нуждаются часто в поступлении извне восстановителя в виде водорода (электронов), источником которого служат также реакции энергетического метаболизма. И наконец, тесная связь между энергетическими и конструктивными процессами проявляется в том, что определенные промежуточные этапы или метаболиты обоих путей могут быть одинаковыми (хотя направленность потоков реакций, относящихся к каждому из путей, различна). Это создает возможности для использования общих промежуточных продуктов в каждом из метаболических путей. Промежуточные соединения такой природы предложено называть амфиболитами, а промежуточные реакции, одинаковые для обоих потоков, — амфиболическими. [c.80]

    Известны прокариоты, для метаболизма которых О2 не нужен, т. е. энергетические и конструктивные процессы у них происходят без участия молекулярного кислорода. Такие организмы получили название облигатных анаэробов. К ним относятся метан-образующие архебактерии, сульфатвосстанавливающие, маслянокислые и некоторые другие эубактерии. До сравнительно недавнего времени считали, что облигатные анаэробы могут получать энергию только в процессе брожения. В настоящее время известно много облигатно анаэробных прокариот, которые произошли от аэробов в результате вторичного приспособления к анаэробным условиям, приведшего к потере способности использовать О2 в качестве конечного акцептора электронов в процессе дыхания. Такие облигатные анаэробы получают энергию в процессах анаэробного д ы X а н и я, т. е. переноса электронов по цепи переносчиков на СО2, SO4, фумарат и другие акцепторы. [c.128]

    Часть общего обмена, которая состоит в поглощении, усвоении питательных веществ и создании за их счет структурных компонентов клетки, называется ассимиляцией — это конструктивный обмен. Вторую часть общего обмена составляют процессы диссимиляции, т. е. процессы разложения и окисления органических веществ, в результате которых клетка получает энергию, — это энергетический обмен. Конструктивный и энергетический метаболизм составляют единое целое. [c.51]

    Рибозо-5-фосфат является промежуточным продуктом пентозофосфатного пути, и это еще раз демонстрирует тесную связь энергетических и конструктивных процессов метаболизма микроорганизмов. [c.225]

    Вариантом бинарного деления является почкование, которое можно рассматривать как неравновеликое бинарное деление. При почковании на одном из полюсов материнской клетки образуется маленький вырост (почка), увеличивающийся в процессе роста. Постепенно почка достигает размеров материнской клетки, после чего отделяется от последней. Клеточная стенка почки полностью синтезируется заново (рис. 20, В). В процессе почкования симметрия наблюдается в отнощении только продольной оси. При равновеликом бинарном делении материнская клетка, делясь, дает начало двум дочерним клеткам и сама, таким образом, исчезает. При почковании материнская клетка дает начало дочерней клетке, и между ними можно в большинстве случаев обнаружить морфологические и физиологические различия есть старая материнская клетка и новая дочерняя. В этом случае можно наблюдать процесс старения. Так, для некоторых штаммов Ккос1откгоЫит показано, что материнская клетка способна отпочковывать не более 4 дочерних клеток. Дочерние клетки лучше приспосабливаются к меняющимся условиям. Почкование обнаружено в разных фуппах прокариот среди фото- и хемотрофов, осуществляющих авто- и гетеротрофный конструктивный метаболизм. Вероятно, оно в процессе эволюции возникало несколько раз. [c.60]

    Изучение физиологии группы клостридиев, осуществляющих ацетоно-бутиловое брожение, привело к открытию В. Н. Шапошниковым (1884—1968) явления двухфазности этого процесса, которое позднее было обнаружено в большинстве типов брожений, характеризующихся сложным набором конечных продуктов. В основе явления двухфазности лежит тесная связь между конструктивными и энергетическими процессами. Вначале, когда имеет место активный рост культуры, сопровождающийся интенсивными биосинтетическими процессами, происходит значительный отток образующегося при брожении восстановителя для конструктивных целей. Это сопровождается преобладающим синтезом более окисленных конечных продуктов брожения (I фаза). При затухании роста и переходе культуры в стационарное состояние уменьшается потребность в восстановителе для конструктивных целей. Последнее приводит к большему его использованию в энергетических процессах и, следовательно, к образованию более восстановленных конечных продуктов брожения (II фаза). Таким образом, масштабы конструктивного метаболизма определяют характер и направление энергетических процессов. [c.240]


    Если водородные бактерии содержат обе формы гидрогеназы, функции между ними четко разделены. В случае отсутствия у водородных бактерий цитоплазматической гидрогеназы возникает проблема получения восстановителя при хемолитоавтотрофном способе их существования. Она решается с помощью механизма обратного переноса электронов на НАД . При функционировании только цитоплазматической гидрогеназы она выполняет обе функции часть восстановительных эквивалентов с НАД Нз поступает в дыхательную цепь, другая расходуется по каналам конструктивного метаболизма. Таким образом, из всех хемолитоавтотрофных эубактерий только водородные бактерии с помощью определенной формы гидрогеназы могут осуществлять непосредственное восстановление НАД окислением неорганического субстрата. В электронтранспортную цепь электроны, следовательно, могут поступать с НАД Нз или включаться на уровне переносчиков с более положительным окислительно-восстановительным потенциалом. С этим связан энергетический выход процесса функционирование в дыхательной цепи 3 или 2 генераторов Ар1н+- [c.386]

    Таким образом, основные способы существования сульфатре-дуцирующих эубактерий включают хемоорганотрофию (источники энергии — брожение или окисление органических субстратов в процессе сульфатного дыхания) или хемолитотрофию (источник энергии — анаэробное окисление Н2 с акцептированием электронов на 80Г) в сочетании с конструктивным метаболизмом гетеротрофного или автотрофного типа. [c.390]

    Известно восстановление сульфата до сульфида, входящего в состав серосодержащих аминокислот (цистин, цистеин, метионин), в конструктивном метаболизме большинства эубактерий. Оно имеет место всегда при выращивании бактерий на среде, где источником серы служат сульфаты. Активность процесса ограничена потребностями клетки в серосодержащих компонентах, а они невелики. Ассимиляция сульфата начинается с его активирования с помощью АТФ в реакции, катализируемой АТФ-зависимой суль-фурилазой  [c.391]

    Аминокислоты и белки также могут выступать в качестве энергетических ресурсов для эубактерий. Их использование связано в первую очередь с определенными ферментативными преобразованиями подготовительного характера. Белки сначала вне клетки расщепляются протеолитическими ферментами, катализирующими разрыв определенных пептидных связей, на отдельные фрагменты — пептиды, которые затем поглощаются клеткой и расщепляются внутриклеточными протеолитическими ферментами до отдельных аминокислот. Дальнейшее их превращение возможно по нескольким направлениям 1) аминокислоты непосредственно используются в конструктивном метаболизме для построения белковых молекул 2) аминокислоты служат основным материалом в энергетических процессах. В последнем случае метаболизирование аминокислот начинается с их декарбоксилирования или дезаминирования. [c.401]

    Конструктивный и энергетический обмен. Физиология изучает процессы, протекающие в живом организме, и их закономерности. Современная материалистическая физиология основана на принципе единства организма с окружающей средой. Взаимодействие организма со средой проявляется в обмене веществ и энергии (метаболизм). Он включает в себя два процесса конструктивный обмен (ассимиляция, или анаболизм) и энергетический (диссимиляция, или катаболизм). В основе конструктивного обмена лежат биохимические реакции, в процессе которых усваиваются вещества, поступающие из окружающей среды, и идет создание биомассы клетки. Сущность энергетического обмена заключается в разрушении веществ, содержащихся в организме, преимущественно в результате гидролитических и окислительных процессов, сопровождающихся выделением энергии, необходимой для биосинтеза. Оба процесса в клетке идут одновременно и сочетаются друг с другом. Энергия, полученная клеткой в процессе обмена веществ, акку.мулируется в соединениях, содержащих химические связи, при разрыве которых выделяется большое количество энергии (макроэргические). Часто это соединения с фосфатными связями, например аденозинтрифос-фат (АТФ). По мере надобности эти вещества подвергаются гидролитическому распаду, сопровождающемуся выделением энергии. [c.210]

    Сбрасываемые сточные воды содержат значительное количество органических веществ, вследствие чего в воде в пункте Л 3 возрастает перманганатная окисляемость. Этой величиной оценивается наличие в воде органических и неорганических восстановителей, способных окисляться перманганатом калия. Об органической приро де внесенных загрязнений говорит изменение микробного числа воды в пункте Л 3. Резкое увеличение числа сапрофитов может быть вызвано поступлением в водоем органических веществ, которые используются сапрофнтами в процессах энергетического и конструктивного. метаболизма. [c.23]

    Как можно видеть из изложенного выше, в мире прокариот не существует резкой границы между авто- и гетеротрофными организмами, так же как нет ее в ряду одноуглеродных соединений (СОг, СО, НСООН, НСНО, СНзОН, СН4), каждое из которых может служить источником углерода для определенной группы прокариот. Однако использование термина автотрофия удобно для обозначения конкретного типа конструктивного метаболизма, поскольку в процессе эволюции он оказался специфически связанным с определенными видами энергетических процессов, что привело к появлению у прокариот таких типов жизни, которые отсутствуют у более высокоорганизованных форм. [c.71]

    В рамках разобранных выше основных способов питания, определяющих возможности существования прокариотных организмов, в мире прокариот обнаружено множество типов (форм) жизни. Тип жизни — понятие, отражающее, с одной стороны, специфику процессов энергетического метаболизма, с другой — специфику процессов кон- структивного метаболизма, присущую определенной группе организмов. Разберем это на примере прокариот, для которых обязателен хемоорганогетеротрофный способ существования. Энергетические процессы этих организмов различаются исходными субстратами, специфичностью промежуточных окислительно-восстановительных превращений и природой конечных акцепторов электронов конструктивные — разной степенью развития биосинтетических способностей, т. е. различными потребностями в готовых питательных веществах. [c.96]

    Изложенные данные позволяют составить определенное представление о том, насколько широко распространено образование этилового спирта среди разных групп прокариот и насколько различны метаболические пути, ведущие к его синтезу. Из этого следует, что накопление в культуральной среде этилового спирта само по себе не может служить указанием на место процесса, приводящего к его образованию, в эволюции. Этиловый спирт у прокариот может быть одним из конечных продуктов как эволюционно более ранних, (гликолиз), так и более поздних (окислительный пентозофосфатный цикл, путь Энтнера — Дудорова) катаболических процессов. До сих пор среди прокариот не обнаружены организмы, сохранившие черты примитивности энергетического и конструктивного метаболизма, у которых спиртовое брожение служило бы единственным способом получения энергии. Тот факт, что наиболее четко и в самом классическом виде спиртовое брожение проявляется у дрожжей, форм эукариотных, не может, как нам кажется, ставить под сомнение его место в эволюции анаэробных энергетических процессов. [c.193]

    Дальнейшее превращение аминокислот возможно по нескольким направлениям 1) аминокислоты непосредственно используются в конструктивном метаболизме для построения белковых молекул 2) аминокислоты служат основным материалом в энергетических процессах. В этом случае метаболизирование аминокислот начинается с их дезаминирования, т. е. отщепления аминогруппы от аминокислоты, и выделения азота в виде неорганического восстановленного соединения — аммиака. [c.360]

    До сих пор мы рассматривали организмы, которые для обеспечения конструктивных процессов используют энергию химических связей органических или неорганических веществ. Другая большая группа организмов способна обеспечивать конструктивный метаболизм за счет световой энергии в процессе, который получил название фотосинтеэ. Итак, фотосинтез это процесс использования энергии светового излучения для построения живого вещества. Образование АТР в процессе фотосинтеза называют фоюфоофорилированием. [c.60]

    Мол. ион пептида распадается в результате разрыва связей СН—СО, СО—NH, КН—СН и СН—К с образованием осколочных ионов соотв. А и Х , В и У , С и 2 , 8 и К (я-номер аминокислотного остатка в пептидной цепи), к-рые далее распадаются таким же образом. Общее кол-во пиков ионов в таком спектре может достигать неск. сотен. Кол-во фрагментов определяется строением исследуемой молекулы, запасом внутр. энергии мол. и осколочных ионов и промежутком времени между образованием иона и его детектированием. Поэтому при интерпретации масс-спектров необходимо учитывать как условия измерений (энергию ионизирующих электронов, ускоряющее напряжение, давление паров в ионном источнике, т-ру ионизац. камеры), так и конструктивные особенности прибора. При макс. стандартизации условий измерений удается получать достаточно воспроизводимые масс-спектры. Сравнение масс-спектра исследуемой системы со спектром, имеющимся в каталоге,-наиб, быстрый и простой способ структурного анализа, идентификации в-в при определении загрязнения окружающей среды, контроле продуктов питания человека и животных, изучении процессов метаболизма лек. препаратов, в криминалистике и т.д. Однако идентификация лишь на основании масс-спектра не может быть однозначной, напр, не Все изомерные в-ва образуют различающиеся масс-спектры. [c.662]

    Некоторые анаэробные прокариоты, относящиеся к эу- и ар-хебактериям, — хемоавтотрофы. Фиксация СО2 у них происходит по ацетил-КоА-пути, не замкнутому в цикл (см. рис. 62). Образующийся ацетил-КоА служит акцептором третьей молекулы СО2, что приводит к синтезу пировиноградной кислоты (см. табл. 24). Возможно, этот путь фиксации СО2 — первая примитивная форма автотрофии. Кажется вполне вероятным, что дальнейшие поиски путей автотрофного метаболизма проходили параллельно с формированием аппарата для использования энергии света, поскольку на первом этапе эволюции энергетические и конструктивные процессы зависели от одних и тех же источников и, сле- [c.292]

    С необратимостью связана и другая проблема, в которой стохастическими элементами вряд ли можно пренебречь конструктивная роль необратимых процессов в образовании крупномасштабных многомолекулярных образований, известных под названием диссипативных структур. Наиболее удивительная особенность этой проблемы, ставящая перед исследователями один из наиболее трудных вопросов, — глубокое различие между поведением материи на макроскопическом уровне и ее поведением на микроскопическом уровне. Каким образом становится возможной пространственно-временная когерентность химических диссипативных структур, лазерных лучей или ячеек Бенара Каким образом может спонтанно возникнуть и самоподдерживать-ся столь дальний макроскопический порядок, несмотря на молекулярный хаос и внутренние флуктуации ) Столь же глубокое различие мы обнаруживаем в процессах самоорганизации, происходящих в биологических системах. Процессы метаболизма по существу представляют собой химические превращения. Ясно, что в подобных превращениях элемент случайности весьма велик. Дело в том, что в живых клетках число молекул, участвую- [c.14]

    Характер изменения величины pH может существенно различаться в зависимости от особенностей роста и метаболизма исследуемого объекта, состава питательной среды, условий культивирования, в том числе и от конструктивных особенностей ферментера. Поэтому теоретическое обоснование принципов регулирования pH и определение области практической применимости этих принципов с учетом биологических особенностей микро-объектоз и характеристик ферментеров требуют в первую очередь установления количественных закономерностей изменения величины pH в процессе роста популяции. [c.288]

    Одним из путей отвода такой избыточной энергии является, по мнению Булокка (Bu Lo k, 1961), сверхсинтез вторичных метаболитов . Данный исследователь полагает, что специфическое назначение вторичного метаболизма состоит в сохранении механизмов клеточного размножения путем быстрого включения иных конструктивных процессов в тот момент, когда размножение клеток становится больше невозможным, т. е. когда прекращается отвод энергии и промежуточных метаболитов путем размножения. Подтверждением могут служить данные (Глазер и др., 1968 Силаева, Прокофьев, 1968) о более низком содержании макроэргических фосфорных соединений (в том числе АТФ) в клетках Вас. brevis var. G. В., продуцирующих грамицидин, по сравнению с количеством тех же соединений в клетках этой же бактерии, но не образующих указанный антибиотик. [c.91]

    Не исключено, что в первой фазе развития стрептомицета, когда происходят энергичные конструктивные процессы, функционирует пентозный цикл превращения углеводов. Однако с началом образования и накопления в клетках стрептомицета антибиотика метаболизм переключается на другой путь — путь ЭМП. [c.120]


Смотреть страницы где упоминается термин Процессы конструктивного метаболизма: [c.85]    [c.110]    [c.135]    [c.224]    [c.297]    [c.351]    [c.115]    [c.95]    [c.313]    [c.115]    [c.269]    [c.235]   
Смотреть главы в:

Основы энзимологии -> Процессы конструктивного метаболизма




ПОИСК





Смотрите так же термины и статьи:

Конструктивность

Метаболизм



© 2025 chem21.info Реклама на сайте