Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Две фазы монослоя

    Исследуя адсорбцию на жидких поверхностях, измеряют поверхностное давление —а в зависимости от площади со, приходящейся на молекулу (нерастворимые монослои), или поверхностное натяжение в зависимости от концентрации поверхностноактивного вещества в объемной фазе (монослои растворимых или летучих веществ). В первом случае величину адсорбции на поверхности жидкости можно определить, зная количество нанесенного на поверхность нелетучего и нерастворимого вещества, образующего монослой, и занимаемую монослоем на поверхности жидкости площадь. Во втором случае величина адсорбции на поверхности жидкости непосредственно не измеряется. Она может быть вычислена из зависимости а от Са с помощью уравнения Гиббса (ХУП, 37а). Наоборот, в случае адсорбции на поверхности достаточно высокодисперсных твердых тел измеряется (в зависимости от парциального давления или концентрации адсорбируемого вещества в объемной фазе) именно величина адсорбции. Для определения поверхностного давления ти в этом случае также может быть применено уравнение Гиббса, поскольку оно связывает три величины поверхностное натяжение, адсорбцию и давление адсорбата в газовой фазе. [c.476]


    При использовании разбавленных растворов эмульгатора концентрация его на поверхности значительно превышает концентрацию в объеме фазы, поэтому Г равно концентрации вещества на 1 см в адсорбированном монослое. Ее величину определяют из графика а — 1п с 171 или а — 1п проведением касательной к кривой в соответствующей точке и подстановкой полученного значения da d n y или da d n в уравнения (111.122) или (111.123). Так как = 1 (где число Авогадро, равное 6,023 х [c.187]

    С повышением поверхностной концентрации начинают проявляться силы межмолекулярного взаимодействия. Здесь возможны различные случаи, причем некоторые из них существенно отличаются от проявлений взаимодействия в объемных (трехмерных) фазах. Простейший из этих случаев имеет место, когда силы межмолекулярного притяжения очень резко спадают с расстоянием. Тогда при данной степени уплотнения монослоя образуются две двумерные фазы — одна с плотной упаковкой, а другая в виде двумерного газа . Любое дальнейшее уплотнение приводит к увеличению площади, занятой конденсированной двумерной фазой, за счет площади, занимаемой двумерным газом . При этом поверхностное давление остается постоянным, так же как сохраняется постоянной концентрация газа при его конденсации. При большой площади 1/Г зависимость л (1/Г) и здесь является гиперболической, но при том значении площади, с которого начинается конденсация , она переходит в горизонтальную прямую, соответствующую гетерогенному монослою. [c.128]

    Как следствие из теории Ленгмюра принимается, что при достижении предела адсорбции на границе раздела раствор — воздух образуется насыщенный монослой из молекул ПАВ, ориентированных перпендикулярно к поверхности водной фазы и плотно прижатых друг к другу (рис. 18.7). На этом основано вычисление размеров молекул ПАВ. [c.170]

    Создавая противовес силе, действующей на подвижную перегородку, можно измерить величину п, т. е. ту силу, которая стремится расширить монослой. Эта сила называется поверхностным давлением монослоя. Она представляет собой двумерный аналог давления объемных фаз. Площадь, приходящаяся в поверхностном слое на одну молекулу адсорбата ( ), можно считать двумерным аналогом молярного объема. Двумерный молярный объем, очевидно, получается путем деления площади монослоя на число образующих его молекул. [c.354]

Рис. VII.2. Зависимость концентрации органического вещества от расстояния до границы раздела фаз при монослой-ной адсорбции Рис. VII.2. Зависимость <a href="/info/231528">концентрации органического вещества</a> от расстояния до <a href="/info/68165">границы раздела</a> фаз при монослой-ной адсорбции

    Для изображения молекул ПАВ приняты условные обозначения. Прямая или волнистая линия обозначает углеводородный ря.д <ал, а кружок — полярную группу (рнс. 19.6). Благодаря дифильному строению ПАВ их молекулы самопроизвольно образуют ориентированный монослой на поверхности раздела фаз в соответствии с условием уменьшения энергии Гиббса системы полярные группы ( головы ) молекул располагаются в водной (полярной) фазе, а гидрофобные радикалы ( хвосты ) вытесняются из водной среды и переходят в менее полярную фазу, например в воздух (рис. 19.7). Причиной такой ориентации является то, что энергия взаимодействия молекул воды друг с другом больше, чем с гидрофобными частями молекул ПАВ нг0-Н20> [c.309]

    Изотерма адсорбции ионогенных ПАВ на границе с твердым телом представляет собой в большинстве случаев типичную двухступенчатую кривую (рис. 135, кривая /), тогда как кривая обменной адсорбции ионов на той же поверхности является обычной кривой типа Лэнгмюра — з, д. м. (кривая II). Расхождение между кривыми начинается при ККМ и объясняется образованием поверхностных мицелл. В простейшем случае такая мицелла может быть бимолекулярной (см. рис. 132) с полярными группами, обращенными к воде и к твердой фазе. Действительно, расчет Ао, проведенный с использованием представлений о монослое, дает явно преуменьшенные значения площади на молекулу ( 10 А ), хо- [c.338]

    В работе [521 этот же метод был использован для формирования несимметричных черных пленок. На поверхность одной И8 водных капелек, находящейся в воздухе, наносится монослой нерастворимого липида. Вторая капелька находится в углеводородном растворе и на ней формируется монослой из липида раствора. При введении первой капельки в углеводородную фазу и сближении ее со второй капелькой между ними образуется несимметричная черная пленка. [c.67]

    Исследования структуры физически сорбированных слоев влаги на оксидах металлов показали, что в процессе адсорбции имеет место образование роев молекул. Для образца, содержащего количество воды, примерно равное монослою (по БЭТ), адсорбированная фаза представляет собой островки толщиной 2—3 молекулы воды. Только при наличии трех монослоев (по БЭТ) предполагается слияние островков, растущих тангенциально поверхности. В этом случае образование полимолекулярных слоев влаги аналогично явлению возникновения зародышей оксида при окислении чистых поверхностей металла в атмосфере кислорода. [c.51]

    МОНОМОЛЕКУЛЯРНЫЙ СЛОЙ (монослой), слой в-ва толщиной в одну молекулу на пов-сти раздела фаз. Возникает при адсорбции, поверхностной диффузии, в результате испарения р-рителя из р-ра, содержащего нелетучий компонент. На твердых пов-стях М. с. обычно образуется вследствие адсорбции ПАВ из разбавл. р-ров или газов при относительно низких давлениях. С ростом концентрации (или давления пара) адсорбируемого в-ва М. с, может переходить в полимолекулярный поверхностный слой. [c.134]

    Мономолекулярный слой (монослой)—слой толщиной в одну молекулу, образуется на граница.х раздела фаз в результате, напр., адсорбции. [c.84]

    Пусть при давлении в системе (см. рис. 1, б) над поверхностью катализатора распределяется слой газа высотой, равной диаметру молекулы реагента. В левом углу потенциальной диаграммы (см. рис. 1, б) сосредоточим участки поверхности катализатора с повышенным адсорбционным потенциалом, а вместе с ними и распределенный Б монослое реагент. Тогда изобара опишет контур поверхности соприкосновения плотного слоя реагента с молекулами реагента газовой фазы. На диаграмме эта изобара примет вид логарифмической кривой р . Относительная высота к г-го слоя реагента будет [c.71]

    При равновесном относительном давлении реагента в газовой фазе, равном единице, величина верхнего монослоя будет равна йо> а находится в равновесии с рх (см. рис. 1, б). Монослой займет относительную поверхность, равную единице, а монослой Й — поверхность 01. Заштрихованные на рис. 1, б участки нижнего слоя и слоя, равновесного давлению р , численно одинаковы и соответствуют поверхности 01- То же самое относится и к 0а, 0д и др., которые пропорциональны величинам а. находящимся в равновесии с Ра, Ра. [c.71]

    Единая теория удерживания и селективности развита в работе [73]. Неподвижная фаза рассматривается как монослой полярного растворителя на плоской поверхности адсорбента. Одновременно указывается, что полярный растворитель [c.129]

    Замечательно, что бензол, не имеющий, в отличие от нитробензола, полярных групп в молекуле, образует граничные фазы на стекле только тогда, если последнее покрыто мономолекулярным адсорбированным слоем нитробензола. Можно полагать, что ориентированный на поверхности стекла монослой нитробензола вызывает своего рода эпитаксиальное действие, распространяющееся в бензоле от слоя к слою и ориентирующее несколько десятков монослоев последнего. Отсюда видно, что состояние поверхности, ее чистота могут играть решающее значение для процесса эпитаксиального наращивания. В дальнейшем нас будут в основном интересовать процессы, обусловленные автоэпитаксией, в условиях, когда затравочный кристалл является метастабильной модификацией.Процесс наращивания алмаза на алмазные затравочные кристаллы назван физико-химическим синтезом, поскольку он основывается на явлениях, изучением которых занимается физическая химия поверхностных явлений. [c.18]


    Вследствие того, что нанесенная таким образом пленка близка к монослой ному покрытию, скорости массопередачи велики и использование таких сорбентов позволяет проводить высокоскоростной хроматографический анализ. Термическая стабильность этих сорбентов на 80—90 °С превышает термостабильность самих неподвижных фаз. Во избежание окисления следует очищать газ-носитель от следов кислорода. Механизм разделения на сорбентах с привитыми фазами Достаточно сложен и определяется преимущественно процессами адсорбции. [c.112]

    По определению, адсорбция представляет собой разность между полным количеством растворенного вещества в поверхностном слое, которое в заполненном монослое равно Ги, и тем количеством вещества с5, которое способен вместить тот же по толщине слой в отсутствие адсорбции, т. е. при равенстве концентраций в поверхностном слое и в объеме раствора. Величина с5 непрерывно и пропорционально растет с увеличением концентрации и становится равной предельной величине адсорбции Г при 100 % содержании ПАВ в объемной фазе. Следовательно, поверхностный избыток (адсорбция Г) должен линейно снижаться с увеличением концентрации после формирования на новерхности насыщенного мономолекулярного слоя ПАВ и достигать нулевой величины при 100 % содержании ПАВ в растворе (рис. 3.24 кривая 2). После заполнения монослоя (рис. 3.25) постоянства может достигать полное количество вещества в нем, но не адсорбция. На этом основании можно полагать, что уравнение (3.4.7) дает не адсорбцию (но Гиббсу), а полное количество растворенного вещества в поверхностном слое (адсорбцию по Ленгмюру). [c.581]

    Далее могут возникать поверхностные моноатомные образования с уступами, на которых присоединение следующего атома будет облегчаться благодаря взаимоде йствию уже с тремя соседними элементами (положение ///) энергия взанмодействня составит здесь величину За. После созда1П1я такого поверхностного образования присоединение каждого следующего атома к нему сопровождается выигрышем энергии За и лишь в начале развития каждого нового ряда атомов — 2а, чем обеспечивается так называемый повторяющийся шаг и наибольшая скорость распространения монослоя атомов на поверхности, т. е. наиболее быстрый рост грани. Когда монослой атомов покроет всю поверхность грани, дальнейший ее рост будет вновь проходить те же стадии до тех пор, пока не образуется двухмерный островок, обеспечивающий повторяющийся шаг. Очевидно, что при образовании такого островка — двухмерного зародыша — затруднения роста грани становятся наименьшими. Скорость роста грани, т. е. скорость формирования кристаллической фазы, должна быть поэтому функцией энергии, пеоб- [c.336]

    Независимо от величины к из уравнений (22,7) — (22.9) следует, что дофазовое осаждение металлов наблюдается только в том случае, когда работа выхода электрона из металла подложки (металл М1) больше, чем из металла монослоя (Мг). Следовательно, образование монослоя сопровождается переносом электронов нз него в субстрат и появлением диполей на границе раздела М( и Мг, причем положительный конец диполя расположен на монослое. Свойства монослоя, его структура, во многом определяемая структурой субстрата, играют очень важную роль в процессе дальнейшего развития осадка, влияя также на адсорбционные, каталитические, коррозионные и другие характеристики металла. Дофазовое осаждение представляет поэтому не меньший интерес, чем зароды-шеобразование, и с ним необходимо считаться прн рассмотрении механизма возникновения новой металлической фазы. [c.458]

    Экспериментальное осуществление Оже-спектроскопии требует глубокого вакуума, чтобы предотвратить загрязнение поверхности в результате адсорбции различных примесей из газовой фазы. Расчеты показывают, что при давлении 1,33-10- Па монослой адсорбированного газа образуется всего за 1 с, тогда как при 1,33-10 Па для этого требуется более 2,5 ч, что превышает время анализа. Поэтому эксперимент проводят при давлении 1,33-10 Па. Чтобы обеспечить выбивание электронов с К-уровня, энергия падающих электронов в Оже-спектроскопии должна составлять несколько килоэлектронвольт. Пучок падающих электронов обычно направляют под небольшим углом к поверхности. Это позволяет регистрировать состав атомов, находящихся на самой поверхности. Чтобы получить спектр Оже, т. е. зависимость числа эмитированных электронов N от их энергии, постепенно изменяют напряжение и на отклоняющем электроде. В результате этого при каждом значении и через выходное отверстие металлической камеры проходят и регистрируются только те электроны, энергия которых заклрочена в узком интервале энергий Де. Если же на напряжение и дополнительно накладывается переменная составляющая Д /, то регистрируются дифференциальные спектры Оже с1Ы/(1г—е (фактически регистрируется йЫ1йи от и). [c.85]

    Для приблизительной оценки энергии отталкивания полярных групп используются данные, получаемые при изучении монослоев на поверхности раздела фаз вода — углеводород. Если принять, что энергия взаимодействия погруженных в углеводородную среду углеводородных хвостов молекул в монослое и молекул среды сов-пядает с энергией взаимодействия углеводородных хвостов друг [c.174]

    МОПОМОЛЕКУЛЯРНЫЙ слой (монослой), слой н-ва толщиной в одну молекулу на пов-сти раздела фаз. Возникает при адсорбции, поверхностной диффузии и в результате испарения р-рителя из р-ра, содержащего нелетучий компонент, В случае ПАВ на пов-сти жидкости М. с. могут находиться в разл. агрегатных состояниях. Если расстояние, разделяющее молекулы в М. с., велико по сравнению с их размерами и молекулы практически не взапмодейстиуют, слой наз. газообразным. Еслп молекулы в М. с. имеют плотную упаковку, слой наз. конденсированным такой М. с. уподобляют двумерной жидкости или двумерному тв. телу. Состояние М. с., промежуточное между газообразным и конденспроваиным (молекулы упакованы нск.чотно, но взаимод. между ними достаточно интенсивно), паз. жидкорасширенным. [c.352]

    Для массовых определений удельной поверхности силикагелей используют избирательность поглощения углеводородов определенного класса. Оценку удельной поверхности производят по изд1енецию концентрации толуола в его смеси с изооктаном в результате контакта с навеской адсорбента. Измерения производят с помощью рефрактометра. Изотерма адсорбции толуола в изооктане проходит через максимум при концентраций 40%. Благодаря резко выраженной избирательности адсорбции ароматических углеводородов в точке максимума в адсорбированной фазе находится только толуол, причем его молекулы образуют на поверхности плотный монослой. Количество адсорбированного толуола (в моль/г) составляет  [c.98]

    Уравнение (1.41) может быть легко получено, если трактовать адсорбционный монослой как отдельную фазу, ионы в которой находятся в равновесии с раствором электролита. При этом по-срав-нению с обычным выражением для химического потенциала твердой фазы (1.9) химический потенциал иона в монослое содер--жит дополнительный энтропийный член 01п [Ti/( — т )], учитывающий заполнение монослоя. [c.21]

    Как показано Дальтоном и Айлером [132], на поверхности кремнезема имеется монослой молекул воды, связанной водородной связью с группами SiOH поверхности. В отношении вязкости такой слой ведет себя подобно дисперсной фазе. [c.328]

    Авторы нашли, что высота слоя эмульсии на границе раздела фаз всегда больше, если дисперсная фаза смачивает стенки колонны. Хотя в монослое капель этот эффект может быть объяснен результатами Нелсена, все же повышенная межкапельная коалесценция, наблюдавшаяся при несмачивающихся стенках, не может быть просто приписана форме межфазной границы. Предложены некоторые модели, объясняющие такое поведение [53]. Экспериментальные результаты скоррелированы так, как это показано на рис. 7-24. [c.298]

    Возможно, что протекание реакции на поверхности, а не в объеме содействует не только адсорбция, как таковая, но и упорядочение молекул адсорбата в результате адсорбции, которое характеризуется более выгодным расположением реакционных центров. Ориентация молекул зависит от поверхностно-активных свойств молекул и степени заполнения поверхности адсорбированным веществом. Так, Хевинга [35] установил прямую связь скорости реагирования вещества в монослое с расположением реакционных групп на границе раздела фаз. Кроме того, он отметил, что кажущиеся аномально высокие скорости некоторых реакций на поверхностях раздела обусловлены наличием местных разностей электрического потенциала, которые лгогут влиять на энергию активации этих реакций. Он же приводит пример реакции, которая не происходит [c.384]

    Жидкомозаичная модель Синджера и Николсона [3] различает два типа мембранных белков периферические и интегральные. Периферические белки удерживаются на поверхности мембраны в основном ионньпми взаимодействиями и относительно легко солюбилизируются, например, путем увеличения ионной силы. Интегральные белки погружены в липидную фазу и не могут быть высвобождены из мембраны без хотя бы частичного ее разрушения. Они нерастворимы в воде, гидрофобны и липофильны. Эта характеристика двух классов мембранных белков предполагает, что они асимметрично распределены в клеточной мембране периферические белки находятся только по одну сторону бислоя, тогда как интегральные проникают в нее — чаще только в один монослой если же они пронизывают весь бислой, то тогда они функционально асимметричны. Пример асимметрии последнего типа — транспортные системы, такие, как Na+, К+-АТРаза (гл. 7). [c.77]

    При отсутствии ограничений пленка лнпнда на границе раздела вода—воздух стремится занять максимально возможную площадь н представляет систему, аналогичную так называемому двумерному газу (рис. 279,а). В этом состоянии монослоя молекулы липида свободно перемещаются вдоль поверхности воды, практически не взаимодействуя друг с другом. При постепенном сжатии монослоя, приводящем к увеличению плотности упаковки, молекулы начинают взаимодействовать между собой, н на поверхности воды образуется сплошная пленка липида, отвечающая жидкорастянуто-му состоянию монослоя, другими словами, состоянию двумерной жидкости (рис. 279, б). При дальнейшем увеличении сжатия молекулы будут стремиться к максимально плотной упаковке. При этом они упорядочивают свою ориентацию в монослое так, что их полярные головки обращаются в сторону водной фазы, а углеводородные цепн выступают в воздух в виде своеобразного частокола (рис. 279, в). Такая плотно упакованная пленка, в которой углеводородные цепи липидных молекул сохраняют определенную подвижность, называется конденсированным монослоем. Если давление увеличивать н дальше, образуется твердый, практически несжимаемый конденсированный монослой, в котором площадь, приходящаяся на одну молекулу, минимальна. Когда же давление превысит некоторую предельную величину, называемую давлением коллапса, произойдет разрушение пленкн, прн котором монослон молекул надвигаются один на другой. [c.550]


Смотреть страницы где упоминается термин Две фазы монослоя: [c.26]    [c.52]    [c.26]    [c.26]    [c.474]    [c.49]    [c.60]    [c.161]    [c.204]    [c.10]    [c.71]    [c.24]    [c.567]    [c.50]    [c.24]    [c.195]    [c.554]   
Смотреть главы в:

Физико-химические расчеты -> Две фазы монослоя




ПОИСК







© 2025 chem21.info Реклама на сайте