Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализатор ионизационный

    Радиометрические методы анализа твердых и жидких веществ основаны на использовании явлений поглощения и отражения радиоактивных излучений веществом или на возбуждении вторичного излучения в анализируемой пробе. При анализе газов эти эффекты не подходят, так как газы вследствие их малой плотности почти не оказывают влияния на излучение. Важное значение имеет изменение электропроводности газов при воздействии излучения, обусловленное ионизацией атомов и молекул газа. Индуцированная электропроводность зависит от химических и физических свойств газов, что позволяет провести анализ газов или их смесей. На этом принципе основано действие ионизационных анализаторов. Ионизационный анализатор состоит из ионизационной камеры и прибора, измеряющего ток ионизации (рис. 6. 3). В камере закреплен радиоактивный препарат, излучение которого вызывает ионизацию пробы анализируемого вещества, находящейся в межэлектродном пространстве. Электрометром измеряют возникающий ионный ток, который при постоянной толщине радиоактивного препарата и постоянном электрическом поле зависит от плотности и состава газа. [c.324]


    Образовавшиеся ионы ускоряются при прохождении через отрицательно заряженные щелевые диафрагмы 6 по направлению к масс-анализатору. Неионизированные молекулы, как и незаряженные осколки, при помощи диффузионного насоса 8 выводятся из масс-спектрометра. Наряду с ионизацией электронным ударом иногда используют также другие методы получения ионов. При осуществлении фотоионизации необходимая энергия поставляется ультрафиолетовым излучением. Для этого требуется излучение с длиной волны 150—80 нм (вакуумная ультрафиолетовая область), соответствующее ионизационному потенциалу 8—15 эВ. При ионизации полем используют сильное электрическое поле, способное оторвать электроны от молекул вещества пробы. В обоих методах ионизации происходит мягкая ионизация, так как подводимая энергия лишь немного превышает потенциал ионизации и, таким образом, едва разрывает связи в молекулярном ионе . Поэтому спектры, получаемые при фотоионизации и ионизации по- [c.286]

Рис. 6.13. Схема устройства ионизационного анализатора. Рис. 6.13. <a href="/info/329541">Схема устройства</a> ионизационного анализатора.
    Высокая чувствительность ионизационных анализаторов обусловливает возможность их применения в процессах управления и контроля производства, а также в контроле воздуха промышленных помещений и при анализе атмосферы. Этим методом можно определять содержание в воздухе таких особо токсичных соединений, как четыреххлористый углерод, хлористый водород, фтор, карбонильные соединения, тетраэтилсвинец, сернистый ангидрид, серный ангидрид и хлорсодержащие органические соединения в количествах 1 млн . [c.325]

    Исполнение II —анализатор с двумя пламенно-ионизационными детекторами, включенными ио дифференциальной схеме со стеклянными и металлическими насадочными колонками, что позволяет производить анализ примесей и следов органических соединений, а также. массовые анализы различных к.лассов веществ. [c.110]

    Ионизационная камера и камеры ускорения. Из натекателя газовый поток поступает в ионизационную камеру, в которой давление поддерживается на уровне 10- —10 мм рт. ст. и подвергается в ней бомбардировке под углом 90° электронным пучком, испускаемым горячим катодом. Положительные ионы, образующиеся при взаимодействии с электронным пучком, пропускаются через первый ускоряющий электрод с помощью слабого электростатического поля между выталкивающим и ускоряющим электродами. Сильным электростатическим полем между первым и вторым ускоряющими электродами ионы разгоняются до их конечных скоростей. При прохождении пучка ионов между ускоряющими электродами достигается его дополнительная фокусировка. Для получения спектра к трубе анализатора прикладывается магнитно доле или же варьируется разность потенциалов между первым [c.368]


    Метод масс-спектрометрии позволяет разделять молекулы пробы в соответствии с их массами и измерять их количества. Для разделения молекул различных масс их прежде всего ионизируют, а затем помещают в электрическое и/или магнитное поле. Эти поля взаимодействуют с ионами, таким образом разделяя их пространственно в соответствии с их массой и зарядом. Разделенные ионы при достижении детектора создают электрический ток, который затем измеряется. Величина измеренного тока пропорциональна концентрации молекул в пробе. Можно выделить пять основных узлов обычного масс-спектрометра камера для ввода пробы, ионизационная камера, масс-анализатор, детектор и регистратор данных. [c.661]

    Ионизационные камеры и реже пропорциональные счетчики применяются также для счета а-частиц по энергиям. Для этого размеры камер увеличивают, чтобы весь пробег а-частиц лежал внутри камеры. Полное поглощение а-частиц в объеме камеры вызывает пропорциональную энергии ионизацию, и конструкция камеры должна обеспечивать наименьший разброс амплитуд импульсов при каждом значении энергии а-частиц. После усиления импульсы разделяются по амплитуде и подсчитываются с помощью многоканальных электронных анализаторов импульсов. Для определения энергий а-частиц достаточно откалибровать прибор, пользуясь излучателями а-частиц известных энергий. По сравнению с пропорциональными счетчиками большую точность и разрешение по энергиям имеют ионизационные камеры. Разрешающая способность в ионизационных камерах может достигать 0,5% (полуширина пика), а точность измерения абсолютного значения энергии для средних энергий (около 0,01 Мэе) составляет 0,2%. [c.146]

    Парофазный анализатор модели Р45 (рис. 2.17) представляет собой современный газовый хроматограф с дифференциальной газовой схемой, программированием температуры капиллярной хроматографической колонки и пятью наиболее распространенными детекторами, двумя универсальными —дифференциальным ионизационно-пламенным, катарометром и тремя селективными—захвата электронов (галогенсодержащие вещества), пламенно-фотометрическим (5- и Р-содержащие вещества) и термоионным Ы- и Р-содержащие вещества). Возможна одновременная работа двух ионизационных детекторов. В газовой схеме предусмотрена обратная продувка хроматографической колонки для удаления малолетучих веществ и быстрой подготовки прибора к следующему анализу. Имеется испаритель жидких проб, что позволяет использовать прибор не только для парофазного анализа, но и как обычный универсальный хроматограф. [c.97]

    В 1991 г. будут выпускаться три модели с детектором по теплопроводности (ДТП), с детектором пламенно-ионизационным (ПИД) и с двумя сменными детекторами ДТП и ПИД. Все модели хроматографов включают микропроцессорный блок управления режимными параметрами анализатора. [c.446]

    Анализатор предназначен для автоматического определения общего содержания органического углерода в воде любого типа. Продукты органической природы Сначала окисляются, затем преобразуются в метан, который определяется пламенно-ионизационным детектором с измерением содержания углерода. [c.456]

    Масс-спектрометр состоит из пяти основных блоков системы достижения высокого вакуума, системы напуска анализируемого газа, ионизационной камеры, анализатора [c.925]

    Радиоизотопные анализаторы подразделяют на ионизационные, по проникновению излучения, по рассеянию излучения, с вторичным электромагнитным излучением, активационные и т. д. [c.121]

    Метод измерения масс с использованием масс-спектрометра с простой фокусировкой в основном аналогичен методу Нира масса неизвестного иона сравнивается с массой иона известного состава путем изменения ускоряющего напряжения при постоянном магнитном поле измеряются два напряжения, при которых появляются соответствующие пики. Однако в приборах с простой фокусировкой наиболее точные измерения должны быть ограничены молекулярными ионами, которые образуются в ионизационной камере без значительной кинетической энергии. Поскольку в масс-спектрометрах секторного типа нет фокусировки по скоростям, то ионы с начальной кинетической энергией, входящие в анализатор, будут двигаться по кривой большего радиуса, чем такие же ионы, но не обладающие кинетической энергией, и, следовательно, первые будут регистрироваться, как имеющие большую массу. [c.55]

    В методе задерживающего потенциала потенциалы ионизационной камеры и анализатора изменяются независимо от системы коллектора (которая находится под потенциалом земли). В некоторых случаях используется электрод [c.290]

    Другие детекторы для определения углеводородов в воздухе включают термический ионизационный манометр [25] и инфракрасный анализатор. Ионизационный манометр позволяет обнаруживать органические вещества в воздухе в концентрации несколько частей на ЮО миллионов, но такая чувствительность достигается, когда прибор используют в сочетании с предварительным концентрированием. Метод поглощения в инфракрасной области позволяет определять соединения при концентрации 1 часть на миллион, если повысить чувствительность прибора путем сжигания соединений до углекислого газа перед вводом их в анализатор. Как и следовало ожидать, окись углерода и углекислый газ дают большие пики, затрудняя или даже делая невозможным количественные измерения по пикам углеводородов, непосредственно элюируемым после них. Углекислый газ удаляют из пробы, пропуская ее че])ез трубку с аскаритом. Окись углерода переводят в углекислый газ, обрабытывая гопкалитом или попуская через трубку с окисью меди при 410° затш углекислый газ удаляют с помощью аскарита. К сожалению, обе окислительные процедуры приводят к частичным потерям некоторых компонентов, и поэтому весь метод не вполне удовлетворителен. Вследствие более высокой чувствительности как пламенного, так и аргонового детекторов маловероятно, чтобы инфракрасные методы получили широкое распространение в этой области. [c.200]


    Анализатор промышленного хроматографа модели Fra tomati фирмы arlo ЕгЬа состоит из двух частей, которые герметически закрываются металлическими колпаками, выдерживающими большие давления. На рис. 25 представлен анализатор в открытом виде. В верхней части видны колонки, намотанные на металлический цилиндр. Выше расположен детектор (катарометр или пламенно-ионизационный), дозатор для газов и переключатель колонок. [c.384]

    На рис. 28 представлен анализатор промышленного хроматографа фирмы У. С. Руе Со. Ы(1. . Пневматический дозатор, намотанная на два металлических цилиндра колонка, детектор и регулятор давления газа-посителя смонтированы на подвижном шасси, которое очень легко вынимается из корпуса анализатора для осмотра или ремонта. На передней панели шасси расположены измеритель давления газа-носителя и измерители скорости газа-посителя и анализируемой пробы. Температура анализатора может меняться в пределах от 30 до 150° и поддерживается с точностью 4 0,1°. Фирма ДУ. О. Руе Со. Ь1(1. выпускает следующие детекторы к промышленному хроматографу макроаргоновый ионизационный, микроаргоновый ионизационный, пламенно-ионизационный, детектор по сечениям ионизации, электронно-захватный, катарометр и плотномер. Имеется пневматический переключатель нескольких колонок. Переключатель максимум на шесть потоков состоит из шести двухходовых, а также пяти трехходовых клапанов и размещается вне анализатора (фирма У. О. Руе Со. Ь1(1. , 1962). [c.386]

    Процесс фрагментации имеет вероятностный характер. Это значит, что часть ионизированных молекул фрагментируется с ионном источнике, а часть — на пути к детектору, т. е. после ускорения. Последние (так называемые метастабильные ионы) не регистрируются в виде нормальных пиков осколочных ионов. В случае ДВС фрагментация ускоренных ионов обычно индуцируется в ионизационной ячейке с повышенным давлением, что требует спехдааль-ного устройства. В принципе требуются два масс-анализатора. Первый — для выбора родительского иона из ионов, образовавшихся в ионном источнике, и второй — для анализа дочерних ионов, образовавшихся в результате столкновений. Поэтому это метод называют тандемной масс-спектрометрией (МС-МС). [c.283]

    Несмотря на то, что МС-МС можно реализовать с большинством из описанных выше (в разд. Разделение ионов , с. 274) масс-анализаторов, в большинстве случаев используют секторные и квадрупольные анализаторы. Схематичное изображение нескольких типов приборов для МС-МС приведено на рис. 9.4-9. В спектрометрах с двойной фокусировкой с геометрией ЕВ или ВЕ ионизационную камеру помещают либо в первой, либо во второй бесполевой области. Если камера расположена в первой бесполевой области масс-спектрометра с геометрией ВЕ (рис. 9.4-9,а), детектирование дочерних ионов конкретного родительского иона проводят сканированием при постоянном отношении В/Е (так называемый В/ связанный режим сканирования). Очевидно, при таком подходе разрешение ограничено оно составляет около 1000 для родительского иона и 5000 для дочернего иона. Другие секторные спектрометры, обладающие лучшим разрешением, состоят из трех или четырех секторов с камерой столкновений, расположенной в третьей бесполевой области, либо представляют собой комбинированные спектрометры, например, с BE-q тoлкн-Q геометрией (см. рис. 9.4-9,б) и квадрупольной ионизационной камерой. В комбинированных спектрометрах ионы, проходящие через область ВЕ, замедляются перед квадрупольной камерой. Важное преимущество комбинированных спектрометров заключается в возможности выбора родительского иона с большим [c.283]

    Спектрометры с волновой дисперсией состоят из диспергирующего кристалла, который отражает определенную длину волны спектра в соответствии с условием Брэгга. Интенсивность этого излучения далее измеряется при помощи газового ионизационного или сцинтилляциониого детектора. Спектрометры с волновой дисперсией характеризуются гораздо лучшим разрешением ( 5 эВ) и лучшим соотношением сигнал/шум, чем спектрометры с энергетической дисперсией. Однако они позволяют записывать спектр лишь последовательно. Кроме того, для работы во всем спектральном диапазоне требуется несколько кристаллов-анализаторов. На практике аналитические приборы комплектуют одним энергодисперсионным спектрометром и несколькими (от одного до пяти) кристаллическими спектрометрами. [c.334]

    В типичном масс-спектрометре проба вводится в вакуумную камеру в виде паров или газа. Следовательно, твердые вещества или очень высококипящие жидкости (с температурой кипения > 250°С), как правило, не могут быть подвергнуты анализу с использованием обычного масс-спектрометра. Давление внутри масс-спектрометра приблизительно в миллиард раз ниже нормального атмосферного давления, таким образом непрерывный ввод пробы при оп-1те-анализе представляет достаточно сложную техническую задачу. Для того чтобы поддержать низкое давление в масс-спектрометре без перегрузки его вакуумных насосов, необходимо использовать специальный ограничитель потока. Существует четыре способа подключения масс-спектрометра к котро-лируемым технологическим линиям капиллярный ввод, молекулярное натекание, пористая прокладка и мембранное соединение. После того как проба введена в масс-спектрометр, она ионизируется в ионизационной камере. Наиболее общий метод ионизации — ионизащя электронным ударом. Следующей стадией за ионизацией молекул пробы является разделение заряженных частиц в соответствии с их массой. Эта стадия в приборе выполняется в масс-анализаторе. Различают два основных типа масс-анализаторов, используемых в масс-спектрометрах для промышленного анализа магнитные и квадрупольные масс-анализаторы [16.4-32,16.4-33]. Магнитные анализаторы обычно дают наиболее стабильные показания. Масс-спектрометры, способные проводить измерения ионов с массой более чем 200 атомных единиц массы (а.е.м.), обычно имеют квадрупольные анализаторы, поскольку они менее дорогие и более компактные по сравнению с магнитными анализаторами. [c.661]

    Что происходит с ионами в масс-спектрометре с магнитным анализатором с момента их возникновения до детектирования Известно, что время, требуемое для пролета иона от ионного источника до детектора, составляет 10 . Это значит, что все ионы, имеющие время жизни более 1(Н с, способны долететь до детектора и проявиться в масс-спектре в виде нормальных пиков. Те ионы, которые имеют гораздо меньшее время жизни, распадаются непосредственно в ионизационной камере. Образующиеся фрагменты приобретают ту же кинетическую энергию, что и долгоживущие их предшественники, и поэтому фиксируются в масс-спектре в виде нормальных пиков осколочных ионов. Однако ионы, время жизни которых менее 1(И с, могут распадаться и по пути от ионного источника до детектора. Особый интерес представляет распад ионов в области между выходной щелью ионного источника и магнитом, называемой бесполевым пространством (ВПП), поскольку в этой области на ионы не действуют никакие поля. [c.59]

    Основные ионы, обусловливающие масс-спектр соединения, возникают непосредственно в ионизационной камере, откуда они за время 10" с поступают в бесполевое пространство между ионным источником и магнитным анализатором. Если ион распадается не в ионизационной камере, а в этом пространстве, то возникают так называемые метастабильные ионы. Эти вновь возникшие ионы отличаются по скорости от тех, что образовались в ионизационной камере, а в масс-спектре они проявляются в виде диффузных пиков, форма которых резко отличается от формы пиков основных ионов. Массовые числа таких диффузных пиков, измеренные в максимуме их интенсивности, обычно имеют дробные значения. Если массовое число т диффузного пика удовлетворяет уравнению = (где mi — более тяжелый ион, а тг — менее тяжелый ион), то это означает, что осколочный ион с массой тг образуется при распаде иона с массой ttii. [c.11]

    Разделение излучения, испускаемого смесью альфа-активных нуклидов, проводят с помощью сеточных ионизационных камер или полупроводниковых детекторов. Для других видов излучения обычно используют некоторые типы сциНтилляционных спектрометров. В устройстве сцинтиллятора излучение попадает на органический фосфор или неорганическое вещество — специальную жидкость, либо особый кристалл (обычно иодид натрия, содержащий следы таллия). Это приводит к излучению в виде вспышки света, соответствующей падающему излучению. Импульсы света переводятся в электрические сигналы при помощи фотоумножителя, затем сигналы различной интенсивности сортируют с помощью анализатора высоты импульсов, получая энергетический спектр. Фотопики этого спектра можно затем использовать для качественного и количественного анализа. Поскольку многие ядра распадаются с испусканием -уизлучения, большое число определений базируется на сцинтилляционной спектрометрии у Лучей. В настоящее время выпускаются детекторы, чувствительные только к -у-излучению определенных элементов. [c.113]

    В анализаторе были сведены к минимуму) и установлением молекулярного натекателя как можно ближе к ионизационной камере. Эта модификация основывалась на выводах Джиффорда, Рокка и Комафорда [744], которые указывали, что влияние памяти наиболее сильно сказывается в высоковакуумной части между натекателем и ионизационной камерой, вероятно, включая сам натека-тель. Эффект памяти возникает из-за обмена между новым образцом с группами, обладающими изотопным составом ранее исследовавшегося образца, и благодаря десорбции ранее исследовавшегося образца со стенок. Эта десорбция может быть продемонстрирована при последовательном введении двух полярных соединений, например этанола и метанола, в масс-спектрометр. Если образец этанола откачивается до тех пор, пока не останется лишь незначительный фон, то введение метанола увеличивает этот фон, так как этанол вымывается со стенок. [c.87]

    При исследовании очень малых количеств инертных газов Нир [1513] использовал статический и другие методы, очень важные при работе на спектрометре, включающем части, которые невозможно было нагревать при высокой температуре. Область источника в спектрометре была эффективно отделена от анализатора щелью с размерами 3,048х 0,1016 мм весь образец вводили в область ионизации. Образец, входящий в анализатор, откачивали ртутным диффузионным насосом над нагретым губчатым титаном для очистки его от примесей и снова возвращали в ионизационную камеру. Потеря образца при прохождении его в анализатор составляла 3% в минуту, так что данные можно было получить в течение приблизительно 10 мин чувствительность этого метода сравнима с методикой статического анализа. Эта методика была применена для измерения отношения Не/ Не в метеоритах и для определения инертных газов, образующихся при бомбардировке различных элементов протонами с энергией несколько тысяч мегаэлектроновольт [198, 17801 в последнем случае полученные данные позволяли определять сечение образования инертных газов. [c.191]

    Масс-спектрометр может быть использован для выделения отдельных типов ионов и установления их кинетической энергии. Некоторые из реакций, в которые вступают ионы, уже рассматривались с точки зрения диссоциации, вызываемой столкновениями или другими путями. Были исследованы такл<е многие особенности взаимодействия ионов с веществом [7451 Линдхолм [1247] и Федоренко [629] описали двойной масс-анализатор для исследования образовавшегося пучка, с помощью которого были получены детальные сведения о процессе. В этом методе бомбардирующие ионы образуются в обычном ионном источнике, ускоряются и разделяются магнитным полем. Выбранные ионы проходят через щель коллектора в камеру столкновений. Образовавшиеся там ионы вытягиваются из этой ионизационной камеры во второй масс-спектрометр для получения масс-спектра. В процессе обмена зарядами, приводящем к образованию ионов, бомбардирующие ионы нейтрализуются. Если энергия рекомбинации бомбардирующих ионов и электрона близка к потенциалу появления данного иона в бомбардируемом газе, то экспериментально установлено, что сечение образования этого иона велико. Если же энергия рекомбинации отклоняется больше чем примерно на 0,5 эв от потенциала появления, то сечение реакции относительно мало. Это используется для определения потенциала появления различных ионов. Например, при использовании Не для бомбардировки газообразного азота сечение образования ионов N+ велико  [c.455]

    Если принять, что чувствительность современных хроматографических анализаторов с пламенно-ионизационным детектором может составлять 10 —(величина, реализуемая, например, при непосредственном определении примесей в воде), то для определения примесей, концентрация которых составляет 1,0—1 10 %, в некоторых случаях целесообразно увеличить относительную концентрацию примесей в растворе (относительно основного компонента), даже несмотря на уменьшение абсолютной концентрации. Так, в чистом изопрене при использовании колонки с эфиром триэтиленгликоля и и-масляной кислоты винилацетилен, объем удерживания которого по отношению к основному компоненту — изопрену — составляет 1,2, можно определить только при концентрации, равной или больше 0,1%. Добавка к изопрену равного объема формамида и проведение затем хроматографического анализа этой фазы дали возможность надежно определить этот компонент. Отметим, что формамид практически не регистрируется пламен-по-иопизационным детектором. Коэффициент распределения винил-ацетилена в системе изопрен—формамид составляет 25, следовательно, при равных объемах фаз только 1/26 доля всего винилаце-тилепа переходит в формамид. Растворимость изопрена в форма-миде — 1%. Таким образом, при анализе формамида определяемые концентрации изопрена и винилацетилена составляют 1 % и 0,004%, а относительная концентрация винилацетилена возросла в 4 раза, что позволяет в 4 раза увеличить практическую чувствительность метода. При выборе более селективных растворителей, в которых коэффициент распределения определяемых компонентов достаточно велик, решение задачи существенно облегчается. [c.102]

    Строгой фокусировки линий и значительно большей, чем в методе Хамоша, интенсивности спектров можно было бы достигнуть, практически осуществив бесщелевой спектрограф со строго аксиальным ходом лучей [6]. Одна из возможных схем такого устройства изображена на рис. 3. Использование в спектрографе, изображенном на рис. 3, мощной разборной рентгеновской трубки с кольцеобразным фокусом и обратным ходом лучей позволяет существенно приблизить источник рентгеновских лучей к кристаллу-анализатору и уменьшить интенсивность непрерывного спектра [9]. Исходящий из кольцевого фокуса конус рентгеновских лучей падает на цилиндрически изогнутый кристалл. В центре кристаллодержателя, подобно тому как это принято в методе Зеемана, располагается клин зазор, образуемый клином с поверхностью кристалла, играет роль входной щели спектрографа. В точке пересечения отраженных кристаллом лучей помещается диафрагма ионизационной камеры. Кинетическая схема позволяет синхронизировать движение кристалла вдоль горизонтальной оси прибора и движение каретки записывающего устройства в перпендикулярном направлении. [c.16]

    Наиболее совершенным автоматическим анализатором серы в потоке нефтепродукта является прибор РАСНП-64, разработанный Башкирским филиалом СКБАНН и Институтом органической химии Башгосуни-верс итета, где в качестве детектора излучения, применена высокостабильная дифференциальная ионизационная камера с неограниченным сроком службы. [c.452]


Смотреть страницы где упоминается термин Анализатор ионизационный: [c.857]    [c.211]    [c.36]    [c.36]    [c.36]    [c.131]    [c.22]    [c.383]    [c.284]    [c.216]    [c.129]    [c.15]    [c.925]    [c.49]    [c.205]    [c.291]   
Руководство по аналитической химии (1975) -- [ c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Анализаторы



© 2025 chem21.info Реклама на сайте