Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Старение окислительное

    Таким образом, окисление полимеров молекулярным кислородом— одна из самых распространенных химических реакций, которая является причиной старения полимеров и выхода из строя изделий. Окисление ускоряется под действием ряда химических реагентов и физических факторов, особенно тепловых воздействий. Процесс окисления протекает по механизму цепных свободнорадикальных реакций с вырожденным разветвлением. Механизм и кинетический анализ процесса термоокислительной деструкции полимеров показывают влияние химической природы полимера на его стойкость к этим воздействиям. Стабилизация полимеров от окислительной деструкции основана на подавлении реакционных центров, образующихся на начальных стадиях реакции полимера с кислородом, замедлении или полном прекращении дальнейшего развития процесса окислительной деструкции. ЭтЬ достигается введением ингибиторов и замедлителей реакций полимеров с кислородом, причем одни ингибиторы обрывают цепные реакции, другие предотвращают распад первичных продуктов взаимодействия полимерных макромолекул с кислородом на свободные радикалы. Сочетание ингибиторов этих двух классов позволяет реализовать эффект синергизма их действия, приводящий к резкому увеличению времени до начала цепного процесса окисления (индукционного периода). [c.275]


    Исследованию ускоренного старения нитрильных резин в гидрогенизационных топливах посвящены работы [334—336]. В них установлено, что интенсивному старению резины в условиях работы топливной аппаратуры предшествует экстракция топливом из резины антиокислителей (неозона Д и альдоль-а-нафтиламина), которые предотвращают ее окислительное старение. Данные о кинетике экстракции антиокислителей из резин углеводородами приведены на рис. 7.2 и в табл. 7.1 335]. Неозон Д экстрагируется быстрее чем альдоль-а-нафтиламин. При 150 °С оба антиокислителя практически полностью экстрагируются из резин углеводородами и топливами в течение нескольких часов [334]. [c.228]

    Из рассмотренных данных следует также, что для предотвращения ускоренного старения резиновых деталей топливных насосов авиадвигателей топливо должно быть стабилизировано в такой степени, чтобы исключить протекание окислительных процессов в агрегатах топливной аппаратуры. В прямогонных топливах это обеспечивается природными ингибиторами окисления, в гидрогенизационных — достигается введением антиокислительной присадки ионола в концентрации 0,003—0,004 /о (масс). При использовании топлив, получаемых смешением прямогонного и гидроочищенного компонентов, содержание прямогонного компонента в смеси таково (не менее 30%), что присутствующий в ней природный антиокислитель по стабилизирующему действию не уступает ионолу в концентрации 0,003— 0,004% (масс.). [c.233]

    На практике старение обычно происходит под влиянием различных одновременно действующих факторов. Например, на открытом воздухе (атмосферное старение) окислительное старение сопровождается световым, на световое старение накладывается тепловое, так как действие света приводит к разогреванию полимера. [c.644]

    Наибольшее распространение в качестве стабилизаторов термоокислительной и термической деструкции полимерных материалов в настоящее время получили низкомолекулярные соединения из класса ароматических аминов, фенолов, фосфитов и серосодержащих производных. Классификация и назначение стабилизаторов приведены в табл. 43.3. Анализ данных таблицы показывает, что большинство термостабилизаторов эффективно защищают многие полимерные материалы не только от термодеструкции, но и других видов старения (окислительного, озонного, фотостарения и т. д.), т. е. термостабилизаторы обладают известной универсальностью, что чрезвычайно важно, поскольку открывает широкие возможности для сокращения количества защитных присадок, вводимых в конкретный полимер 14]. [c.434]

    В области температур порядка —50°(кривая 1) наблюдается сравнительно. медленная обратимая релаксация вторичных связей (не химического типа). В промежуточной области температур вторичные связи релаксируют сравнительно быстро. Температуры областей 1 к 2 недостаточны для заметного развития процессов старения. В области температур порядка 100°(кривая 3) происходит тепловое старение, окислительный разрыв поперечных связей, что сопровождается уменьшением напряжения. Величина остающегося напряжения характеризует число узлов (поперечных связей) в единице объема, т. е. в этом случае определяется величина, близкая к равновесному модулю . Для определения равновесного напряжения авторы принимают формулу Уолла [c.262]


    Катализатор вполне устойчив в окислительных или восстановительных средах при температурах до 550—600 °С, однако длительное пребывание в тех же условиях в атмосфере водяного пара может привести к снижению активности и прочности катализатора. Изменения в свойствах катализатора в присутствии водяного пара происходят вследствие старения и сокращения активной поверхности окиси алюминия, а отчасти, и повышения летучести и потери окиси молибдена. [c.14]

    Нужно также отметить, что смолы, образующиеся в маслах в процессе их искусственного старения, весьма далеки по своему характеру от естественных нефтяных смол. Влияние этих искусственных смолистых продуктов на окисление масел также весьма различно. Смолы, представляющие собой продукты окислительной полимеризации ароматических углеводородов, обладают противоокислительными свойствами смолы, получаемые при окислении нафтено-парафиновых углеводородов, не являются ингибиторами. Смолистые продукты тормозят окисление масел [35], как правило, в тех случаях, когда в них содержатся (или образуются при их окислении) соединения фенольного типа. В какой-то мере сказанное относится и к асфальтенам. [c.69]

    Таким образом, окислительная регенерация после переработки сырья с повышенным содержанием серы приводит к преждевременному и быстрому старению катализатора. Это выражается в ухудшении его дегидрирующих свойств, стабильности и снижении механической прочности. В результате происходит разрушение гранул катализатора, забивка распределяющих устройств реактора и т.п. [c.55]

    К нитрильной группе, а сера играет роль ингибитора окислительных процессов, развивающихся при старении [18]. Процесс вулканизации в присутствии кристаллогидратов хлоридов металлов начинается, вероятно, с реакции гидролиза, происходящего по сложноэфирным группам [16]. [c.393]

    Настоящий стандарт устанавливает метод определения стабильности моторных масел с присадками по НАМИ — ВНИИ НП, характеризующей их способность противостоять старению под длительным окислительным воздействием воздуха при высокой температуре. [c.148]

    Применение в эксплуатации гидрогенизационных топлив (легко-окисляемых) потребовало разработки новых методов испытания топлив на совместимость с резинами с учетом влияния протекающих в топливах окислительных процессов на старение резин. Методы эти основаны на рассмотренных выше представлениях о механизме ускоренного старения нитрильных резин в гидрогенизационных топливах-По одному из методов [339] испытания проводят в две стадии. На первой стадии антиоксиданты экстрагируют из образцов резин в парафиновый углеводород, например гексадекан, который является хорошим экстрагентом антиоксидантов (см. с. 230) и по сравнению с углеводородами других классов сам по себе мало влияет на свойства резины [334, 337, 340]. На второй стадии резины находятся в контакте с окисляющимся топливом. [c.234]

    Старению (деструкции) в большей или меньшей степени подвержены почти все органические н, в частности, полимерные материалы, битумы и др. Агентами, вызывающими деструкцию, являются механические нагрузки, тепло, свет, вода, кислород, озон, ультразвук, окислительные среды и др. Действие этих факторов сводится к разрыву основных цепей макромолекул пли к [c.358]

    Сильное пенообразование обычно сокращает срок службы масла в системе смазки, так как при этом происходит более интенсивное окисление (старение) масла. При вспенивании ухудшаются охлаждающие свойства масла, в результате интенсифицируются окислительные процессы. Наконец, пена, заполняя свободное пространство масляной системы, может проникать через уплотнение, что приведет к повышенным потерям масла. [c.488]

    Первые два типа реакций объединяют иногда под общим термином катагенез , в то время как окислительное воздействие микроорганизмов называют гипергенезом. В последние годы существенно расширились представления о действительных возможностях биодеградации, которая особенно значительно изменяет химический тип нефтей в залежах. Однако вначале рассмотрим превращения нефтей, протекающие нод воздействием температурного фактора,— термолиз, или термическая эволюция (старение) нефти. [c.215]

    Образование осадков при хранении дизельных и главным образом дистиллятных котельных (печных) топлив было за рубежом (главным образом в США) серьезной проблемой и интенсивно исследовалось в конце 50-х годов [1, 10, 14—17]. Осадки, образующиеся в топливах этого типа, имеют окислительное происхождение, так как они выпадают более интенсивно после хранения или искусственного старения топлив содержание кислорода значительно больше, чем в топливе. Они богаты чементами (8, М), что указывает на значитель-ш в их образовании неуглеводородных соедине- ива (смолистых веществ) [1, 6, 12, 25—27]. [c.140]

    Следует также отметить, что осерненные битумы, полученные по такой технологии, отличаются высокой устойчивостью к процессам окислительного старения. [c.36]

    Следует также отметить, что полученные осерненные битумы отличаются высокой устойчивостью к процесса.м окислительного старения. Так, после старения в тонком (2 мм) слое при 163 С в течение 5 час. остаточная пенетрация битума составила 81 % от исходной, растяжимость при 25 "С более 100 см, потеря массы 0,1-0,12 %. [c.41]


    Воздействие реактивных топлив на резиновые технические изделия, применяемые в топливной системе самолетов и двигателей (манжеты, втулки, прокладки и др.), и герметики, приводящее к их старению (потеря эластичности и формы, появление трещин и выкрашивание), отмечается в присутствии гидропероксидов — продуктов окисления топлив. Антиокислители, присутствующие в гидрогенизационных топливах предотвращают окислительные процессы в топливах, тем самым и воздействие их на резиновые технические изделия и герметики. Можно применять более стойкие к окислению резины. В соответствии с комплексом методов квалификационной оценки степень воздействия топлива на резиновые технические изделия и тиоколовые герметики оценивают по пределу прочности и относительному удлинению резины, ее работоспособности, а также изменению твердости герметика. [c.57]

    Сроки хранения и работы эластомерных уплотнений прогнозируют на основе результатов ускоренных испытаний при повышенных температурах. Полученные результаты экстраполируют на рабочие условия, используя уравнения химических реакций и диффузии. Наблюдения за процессом старения различных полимерных материалов показали, что под воздействием среды происходят диффузионный обмен, приводящий к изменению объема и состава компонентов материала уплотнений, и химические реакции (преимущественно окислительные), приводящие к частичному изменению природы полимерных цепей и структурным изменениям. [c.169]

    Окислительная деструкция полимеров играет важнейшую роль в процессе их старения. [c.234]

    Химическое взаимодействие полимеров с кислородом лежит в основе реакций окисления и окислительного разрушения органических полимеров. Сам процесс окисления может ускоряться и активнее развиваться под действием многих факторов теплового (термоокислительное старение), солнечного света, излучений (световое, радиационное старение), солей металлов переменной ва- [c.256]

    Окислительная деструкция является одной из основных причин старения полимеров и выхода из строя многих полимерных изделий. Поэтому проблема защиты полимеров от старения является комплексной. Учитывая все известные виды деструктирующих воздействий на полимеры, можно заключить, что главными из них являются термическая и термоокислительная деструкция, усиливающиеся при одновременном действии света. Эти процессы протекают главным образом по механизму цепных радикальных реакций. Следовательно, меры защиты должны быть в первую очередь направлены на подавление этих реакций в полимерах. Высокомолекулярная природа полимеров является причиной того, что очень малые количества низкомолекулярных химических реагентов способны вызывать существенные изменения физических и механиче- [c.266]

    Так как окислительная деструкция полимеров всегда приводит к ухудшению их физико-механических свойств, вопрос о стабилизации полимеров к окислительной деструкции и старению в процессе эксплуатации приобрел чрезвычайно большое значение. [c.279]

    Окислительная деструкция (старение) каучуков и резин протекает при облучении со значительно большей скоростью, чем при нагревании. Так, жесткость пленок из бутадиен-стирольного каучука после 20 сут естественного облучения в марте увеличилась на 870%, а в мае на 1700%, в то время как в темноте жесткость увеличилась за 3 года всего на 200%. [c.291]

    Разрыв макромолекул приводит к образованию макрорадикалов, которые служат началом реакционной цепи и могут дальше взаимодействовать с макромолекулами полимера, вступать в реакции рекомбинации или диспропорционирования. В результате этих реакций могут изменяться молекулярная масса и структура полимера. При механической деструкции в присутствии кислорода воздуха возникающие свободные радикалы могут инициировать цепной процесс окислительной деструкции, что приводит к еще более глубокому разрушению полимера. Таким образом, все процессы, вызывающие старение полимеров, связаны с возникновением свободных радикалов при разрыве молекулярных цепей и с изменением молекулярной массы и структуры полимера при последующих реакциях этих радикалов. Если в полимер ввести вещества, связывающие свободные радикалы, то цепной процесс, приводящий к дальнейшему снижению молекулярной массы или изменению структуры, не будет развиваться и срок службы материала увеличится. [c.296]

    Окисление. Изучение реакции окисления ненасыщенных по-. жмеров (иначе называемой реакцией их старения) имеет большое практическое значение, так как позволяет определить длительность и допустимые условия эксплуатации резиновых нзде-,1ий. Поэтому исследованию реакции окисления посвящено большое количество работ. Кинетические характеристики окислительного процесса полимеров во многом зависят от скорости диффузии кислорода в толщу материала. Скорость окисления ненасыщенных полимеров на поверхности или в тонкой пленке графически изображается 5-образной кривой с ясно выраженным индукционным периодом (рис. 75). РГндукционный период тем короче, чем выше температура реакционной среды. В зависимости от структуры полимера изменяются скорость диффузии и растворимость кислорода в полимере. Соответственно изменяются кинетика окисления и степень превращения полимера под влиянием кислорода. При одинаковых условиях константа диффузии кислорода в полибутадиене в 10,5 раз больше константы диффузии кислорода в поли-диметилбутадиене. В полимерах, которым можно придать кристаллическую структуру или ориентировать их макромолекулы, [c.239]

    Значительное влияние на окисление оказывают различные химические реагенты и примеси, тормозя (ингибируя) или ускоряя (инициируя) процесс окисления. В реальных условиях окисления и старения каучуков происходит одновременное воздействие нескольких факторов (тепла, света, многократных деформаций), ускоряющих окислительные процессы. Однако одновременное действие этих факторов, как правило, не аддитивно. [c.63]

    При хранении и эксплуатации в полимерном материале могут протекать физические и химические процессы, которые могут привести к выходу из строя материала. Физические процессы преобладают в первые часы и дни после изготовления материала и при длительной эксплуатации могут играть меньшую роль, чем химические. Как указывалось, одним из факторов, приводящих к изменению структуры материапа покрытия, является окисление его с участием кислорода почвенного воздуха. Теория окислительного старения полимеров рассмотрена в ряде работ [5, 12]. [c.99]

    Для борьбы с окислительным старением полимера используют различные приемы. Наиболее распространена стабилизация специальными низкомолекулярными веществами-стабилизаторами. Стабилизаторы тормозят окисление на стадиях зарождения цепи, разрушая или связывая активные примеси на стадии продолжения цепи, обрывая цепи по схеме [c.100]

    Для предотвращения коррозии стенок сосуда под влиянием агрессивных грунтовых сред внутреннюю поверхность их необходимо покрыть составом на перхлор-виниловой основе с грунтовкой (число слоев определяется агрессивностью среды) и слоем жидкостекольной композиции 6 толщиной 2—3 мм. Этот состав является оптимальным с точки зрения прочности, адгезии, плотности и антикоррозионной защиты. Он хорошо выдерживает воздействие различных жидких и газообразных окислительных сред, а также хорошо сохраняется при длительном нахождении в условиях различных грунтовых сред. Кроме того, жидкостекольные составы выдерживают температуру до 800 и ниже 0°С. С внешней стороны ячейки не подвергаются воздействию агрессивных сред и их можно покрыть любым составом, стойким к повышенным температурам в атмосферных условиях. Если в качестве агрессивной среды, интенсифицирующей процессы старения покрытий, применяют летучие вещества, то сверху сосуд 24 закрывают герметической крышкой на болтах с использованием прокладок. [c.86]

    Для печей с рабочей температурой до 1400° С и окислительной атмосферой в рабочем пространстве могут применяться стержневые нагреватели из карборунда. Карборунд (карбид кремния С) получают спеканием при 1600—1700° С массы, состоящей из кремнезема и молотого кокса. Карборундовые нагреватели изготавливаются в виде цилиндрических стержней и известны под названием силитовых и глобаровых. Как силит, так и глобар имеют очень высокое удельное электрическое сопротивление, в сотни раз превосходящее удельное сопротивление металлических сплавов. Температурный коэффициент сопротивления у них переменный. Карборундовые стержни подвергаются с течением времени значительному старению , поэтому питание таких нагревателей осуществляется от трансформаторов с регулируемым вторичным напряжением. [c.22]

    Минимальное теплообразование Максимальная износостойкость для протекторных резин Хорошее сопротивление даздиру и порезу Высокое сопротивление разрастанию трещин Широкий температурный интервал сохранения прочностных и эластических свойств Хорошее сопротивление тепловому, окислительному и озоновому старению Высокая воздухонепроницаемость Удовлетворительное сцепление с дорогой, особенно с влажной (в интересах безопасности езды) Минимальный удельный вес Удовлетворительные технологические свойства (способность к вулканизации, клейкость и др.) [c.341]

    Как видно из таблицы 102, Цис-1,4-бутадиеновый каучук превосходит натуральный по следующим показателям М ини-мальное теплообразование, максимальная износостойкость для протекторных резин, широкий температурный интервал сохранения прочностных и эластических свойств и др., а этилен-пропиленовый эластомер имеет превосходные качества по тепловому окислительному сопротивлению старению, а также [c.341]

    Таким образом, на установках каталитического крекинга катализатор находится в весьма тяжелых усдониях. Свежий катализатор, догруженный в установку, довольно быстро изменяет свои свойства [7, 8]. Прежде всего уменьшаются его каталитическая активность и селективность. Одной из причин ухудшения свойств катализатора является изменение его удельной поверхности, структуры пор и других физических свойств ( старение катализатора ). Другая причина — отравление катализатора, обусловленное изменением химических и каталитических свойств его поверхности. Отравление катализатора может быть обратимым. В этом случае активность катализатора после удаления каталитических ядов полностью восстанавливается. В частности, азотистые основания и коксовые отложения обратимо отравляют алю-мосиликатный катализатор — при окислительной регенерации они лолностью сгорают. При необратимом отравлении каталитические яды не удаляются на какой-либо стадии процесса и постепенно накапливаются на поверхности катализатора. Такими ядами являются металлы и их соединения, содержащиеся в сырье. Накопление металлов на поверхности катализатора приводит к увеличению образования кокса, легких газов и к уменьшению выхода бензина. В результате существенно ухудшаются технико-эконо-мические показатели процесса крекинга. [c.7]

    Определенное количество этого вида сырья, по нашим предложениям, следует использовать для производства компаундированных дорожных битумов улучшенного качества как разбавитель строительного битума. Доля битума в компаунде составляет лишь 20-30 %, т.е. на 70-80 % битум дорожный состоит из неокисленных высокосмолистых компонентов. Качество такого битума очень высокое. Он превосходит окисленные битумы по таким показателям, как растяжимость при 25 °С и О °С, адгезия к минеральным наполнителям, устойчивость к окислительному старению. Его групповой химический состав близок к тому, который характерен для битумов, полученных по предыдущей технологии [c.35]

    Поэтому, во-первых, следует различать биоразложение небольших количеств экологобезопасных продуктов при проливах и утечках и утилизацию значительных количеств при их смене во-вторых, биоразложение в естественных условиях не всегда достаточно эффективно может устранять подобные загрязнения. При незначительных проливах в почву проникают отработанные масла, содержащие присадки, продукты старения и износа металлов. В зависимости от состояния и характера почвы в одном ее кубометре может находиться от 5 до 40 л масла. Биологические окислительные реакции идут в присутствии значительных количеств кислорода, но замедляются продуктами износа металлов. Потребность в кислороде достаточно велика для полного окисления одного литра масла его расходуется примерно в 40—50 раз больше, чем для бытовых сточных вод. При сильном загрязнении воды или почвы образуются так называемые масляные линзы (тела) с относительно небольшой поверхностью. Скорость биоразложения в этом случае определяется постепенным замедлением доступа кислорода, поэтому в большинстве случаев она почти та же, что для углеводородов нефтяного масла. [c.327]

    Таким образом, из -чение старения битумов, полученных окислением и вакуумной концентрацией гудронов различной вязкости, показало, что с увеличением вязкости гудрона, из которого получен битум, их долговечность возрастает. Однако долговечность битумов, полученных из гудронов с вязкостью 92 с и более, и остаточного при действии окислительных факторов и формирования равновесных надмолекулярных структур становится одиналсовой. Поскольку температура растрескивания при усталостном механическом воздействии в остаточном битуме и в битумах, полученных из высоковязких гудронов, возрастает в большей степени,чем в битумах из маловязких [c.217]

    Тетраалкилпроизводные свинца (РЬ(С2Н5)4, РЬ(СНз)4 и др.) используют в качестве антидетонаторов, а оловоорганические соединения, например малеат дибутилолова, — в качестве ингибиторов окислительных процессов старения полимеров (каучуков, поливинилхлорида). [c.348]

    Для защиты каучуков от старения наибольшее значение и распростраиепие имеет ингибирование окислительного процесса по последнему пути, т. е. ингибирование на стадии разветвления цепи окисления. [c.29]

    В отличие от полиэтиленовых лент, в основе поливинилхлоридных лент отмечаются химические изменения на молекулярном уровне за сравнительно небольшой промежуток времени эксплуатации даже на холодных участках трубопровода при температуре транспортируемого продукта, равной температуре окружающей грунтовой среды. Приводимые спектры указывают на протекание в покрытиях процессов термоокислительного распада, и в частности окислительных процессов. Помимо процессов термоокислительного распада и миграции пластификатора, повышению жесткости материала изоляции может способствовать увеличение степени кристалличности в кристаллических или кристаллизирующихся при растяжении полимерах. Если это действительно имеет место, то возникает вопрос, является ли данный фактор основным в повьпиении жесткости покрытия, наблюдаемого в реальных условиях, или же он играет второстепенную роль в тех сложных процессах, которые протекают в изоляции при ее старении. Кроме того, если в пленке имеются кристаллиты, [c.34]


Смотреть страницы где упоминается термин Старение окислительное: [c.380]    [c.545]    [c.62]    [c.155]    [c.179]    [c.86]    [c.89]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.39 ]

Стойкость эластомеров в эксплуатационных условиях (1986) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Окислительное старение изоляционных масел Общие соображения о кинетике процесса жидкофазного окисления углеводородов

Окислительное старение полимеров

Старение



© 2025 chem21.info Реклама на сайте