Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Меченые соединения синтезы

    Ограниченность применения И. и. связана, во-первых, с уже упоминавшимися изотопными эффектами, во-вторых, с возможностью изотопного обмена (напр., атомов-меток в исследуемом растворенном в-ве с атомами того же элемента, входящими в состав молекул р-рителя). Поэтому в молекулу изучаемого хим. соед. изотоп-метку стараются вводить в определенную позицию, где скорость изотопного обмена невелика. Так, при использовании в качестве И. и. фенола его метят по бензольному кольцу, а не по атому Н фенольной группы. Подробнее о синтезе хим. соед., содержащих изотопы-метки в том или ином положении, и номенклатуре этих соед. см. в ст. Меченые соединения. [c.197]


    На химическом факультете МГУ функционирует специальная кафедра радиохимии (кафедра ядерной химии). На этой кафедре ведутся широкие исследования по применению метода меченых атомов в химии, по синтезу меченых соединений и т. д. [c.121]

    Однако за этот период не публиковались новые руководства по синтезу меченых соединений, и в связи с ограниченным объемом книги эта группа веществ исключена из настоящего издания. К сожалению, по этой же причине не удалось включить значительное число элементорганических соединений. В Указателе приводятся сведения о соединениях углерода с Н, Вг, С1, Р, I, N. О, Р, 5, 5е, 51. Сведения по синтезу меченых препаратов и ряда элементорганических соединений читатель нaй eт в первом издании. [c.3]

    Другое важное применение связано с введением метки С. Установление механизмов реакций в органической химии или биохимии, которое ранее основывалось исключительно на использовании радиоактивного изотопа С, можно теперь выполнить с помощью спектроскопии ЯМР С. Как и прежде, проведение синтеза меченого соединения неизбежно, но удается избавиться от часто трудной и не всегда однозначной деградации выделенных продуктов реакции для определения положения метки, поскольку, используя резонанс С, легко определить положение изучаемого атома углерода. В большинстве [c.389]

    Для проверки правильности выбранного способа синтеза меченого соединения необходимо провести несколько модельных опытов с неактивными веш,ествами или с радиоактивными веш,ествами суш,ественно меньшей удельной активности, чем при рабочем синтезе. Это позволяет полностью овладеть техникой работы всего синтеза и тем самым устранить всякие неожиданности. Опыт показывает, что несоблюдение выработанного таким образом хода работ при синтезе с полной активностью или иногда при выполнении даже простого синтеза меченого соединения без предварительных слепых опытов создает серьезные трудности, возникаюш,ие преимуш,е-ственно из-за опасности и высокой стоимости изотопов. [c.661]

    Обычно при синтезе меченых соединений достаточно использовать дистанционную пипетку (рис. 574), в которую раствор засасывается шприцем, соединенным резиновой трубкой с пипеткой, укрепленной на конце подвижного коромысла, и набор щипцов и захватов для операций с ампулами и химической посудой (рис. 575). Это простое оборудование обычно [c.653]

    Прежде чем начать приготовление меченого соединения, необходимо выбрать радиоизотоп и способ синтеза меченого соединения. Принимают во внимание также требования к виду и местоположению атома-метки, период полураспада и вид излучения этого радиоизотопа, удельную активность исходного радиоактивного материала, ее предполагаемое уменьшение в ходе приготовления и применения меченого соединения, устойчивость меченого соединения, влияние радиационных эффектов, легкость очистки продуктов, степень трудности синтеза, сложность аппаратуры, безопасность выбранного метода и, не в последнюю очередь, экономичность метода. [c.660]


    Период полураспада радиоизотопа при выборе удельной активности исходного продукта принимают во внимание только в том случае, если время приготовления или применения сравнимо с периодом полураспада, что привело бы к значительному уменьшению удельной активности продукта. Это обычно требуется для всех радиоизотопов, применяемых для синтеза меченых соединений, за исключением С1 , и Н . Увеличивать удельную активность исходного продукта необходимо также в случае изотопного разбавления в ходе синтеза меченого соединения, т. е. в подавляющем большинстве биосинтезов и обменных реакций. При биосинтезе подобное увеличение активности исходного материала ограничивается чувствительностью биологического материала к излучению. При выборе уровня удельной активности исходного материала приходится решать две противоположные задачи. Для удобства применения требуется возможно более высокая удельная активность, в то время как простота, экономичность и безопасность синтеза возрастают при работе с большими количествами веществ с низкой удельной активностью. [c.660]

    Для приготовления меченых соединений выбирают такие способы, которые при простом и безопасном выполнении дают высокие выходы продукта с высокой удельной активностью, который можно легко очистить. На практике, конечно, очень трудно выполнить все эти требования необходимо взвесить достоинства и недостатки возможных способов и выбрать самый выгодный в данном случае способ синтеза меченых соединений. [c.661]

    При конструировании вакуумных систем для работы с мечеными соединениями необходимо определить размеры кранов и линий. Способность системы транспортировать газы, т. е. ее пропускная способность, определяется количеством перемещенного газа, отнесенным к величине перепада давления в данной системе. Пропускная способность зависит от вида потока преобладающего в системе. При ограниченных объемных скоростях, используемых при синтезе меченых соединений, имеют место два вида потока. Вязкий, или ламинарный, поток имеет место в том случае, если средняя длина свободного пробега молекул меньше диаметра трубки. Газ вблизи стенок трубки почти неподвижен на некотором расстоянии от стенок течение ламинарное. При уменьшении давления увеличивается средняя длина свободного пробега и течение газа замедляется. Когда средняя длина свободного пробега молекул достигает /з или большей величины от диаметра [c.668]

    С помощью меченых соединений часто изучают механизмы фрагментации молекул органических соединений в условиях масс-спектрометрии. В этом случае по сдвигу массового числа осколочного иона в спектре селективно меченного соединения можно определить состав иона, изучить процессы миграции атомов и групп атомов. Синтез меченых соединений используют также для решения структурно-аналитических задач. Меченые аналоги изучаемого вещества широко применяют в качестве внутренних стандартов при количественных масс-спектрометрических определениях веществ в больших объемах жидкостей, в частности биологических. С помощью масс-спектрометрии определяют содержание конкретного вещества и положение метки в изотопно-меченых аналогах при изучении механизмов органических реакций и путей трансформации биологически активных веществ в живых организмах и культуральных жидкостях. [c.76]

    Наибольшее значение имеет радиоуглерод. Из шести известных изотопов этого элемента два изотопа являются стабильными (О и i ) и четыре — радиоактивными (С , , , С ). Для синтеза меченых соединений можно использовать только и поскольку два остальных изотопа имеют период полураспада несколько секунд. В большинстве случаев применяют долгоживущий углерод G он сохраняет свое основное значение, несмотря на возросшее использование трития. [c.661]

    Этот изотоп используется для синтеза меченых соединений. [c.661]

Рис. 587. Универсальная аппаратура для органического синтеза меченых соединений. Рис. 587. Универсальная аппаратура для <a href="/info/139760">органического синтеза меченых</a> соединений.
    Для выделения веществ при синтезе меченых соединений используют преимущественно хроматографию на бумаге и на ионообменниках. Одним из наиболее эффективных методов считается также экстракция. При правильном выборе растворителя и pH, проверенном обычно слепыми опытами, продукт можно часто выделить достаточно полно, что зависит от числа повторных экстракций. На рис. 593 изображены различные типы экстракторов для этих целей. [c.670]


    Радиохроматография, эффективный и часто используемый аналитический метод в органической химии и биохимии, сочетает высокую разделительную способность хроматографии на бумаге с большой чувствительностью при определении ионизирующего излучения. Ее значение в синтезе меченых органических соединений возрастает еще благодаря тому, что часто необходимо бывает обнаружить и выделить радиоактивные примеси в очень малых количествах. В некоторых современных синтезах меченых соединений с применением радиоизотопов с весьма высокой удельной активностью и с сильным радиационным действием [66, 84] применение хроматографических методов совершенно необходимо, поскольку они дают возможность обнаружить и отделить очень малые количества продуктов радиолиза, оказывающих существенное влияние на общую активность неочищенного продукта. [c.672]

    Органически связанная сера для синтеза меченых соединений достаточно подвижна главным образом в связи С=8 или С—ЗН, способной к таутомерному превращению в связь С=8. Скорость обмена сильно зависит от структуры молекулы, а именно от степени поляризации связи С=8. [c.687]

    Важной деталью разработки хода синтеза меченых соединений при помощи обменных реакций является определение оптимальных условий проведения, особенно установление зависимости степени обмена от температуры, концентрации компонентов, типа катализаторов, реакционной среды, а также определение деструкции изучаемого вещества при выбранных условиях. [c.688]

    Применение микрометодов целесообразно также и при синтетической работе, особенно в случае многоступенчатых синтезов и при работе с мечеными соединениями. Особенно выгодно проводить в небольшом масштабе все ориентировочные опыты. [c.692]

    При проведении исследований с мечеными соединениями основными проблемами являются синтез, выделение и очистка селективно меченного аналога с высокой изотопной чистотой, т.е. с достаточно высоким соотношением меченого материала к немеченому или частично меченому. При выборе метода синтеза определяют, какой атом и в какой группировке хотят селективно заместить на его изотоп, и, кроме того, учитывают, чтобы в процессе синтеза не происходил изотопный обмен, который может приводить к уменьшению изотопной чистоты. [c.76]

    Используется для синтеза меченых соединений.  [c.244]

    Приведите схему синтеза каждого из следующих меченых соединений, используя Hj, 0 в качестве источника 0. [c.659]

    Приведите схему синтеза следующих меченых соединений, используя в качестие истоя-виков метки СОз или СНдОН и Нз 0 [c.659]

    Меченых соединений синтез 3—229 Мешалки — см. Перемешивание Миазин 3—1063 [c.569]

    Известны различные способы синтеза меченых соединений (см. Меченых соединений синтез). Наряду с обычным химич. синтезом используются реакции изотопного обмена и биологич. синтез. При метке соединения двумя изотопами в индикаторных количествах считают, исходя из статистич. представлений, что молекул, содер кащих одновременно два меченых изотопа, практически пе встречается. В большинстве случаев изотопная мотка занимает определенное положение в молекуле, напр, используемая в качестве И. и. пропионовая кислота может быть помечена следующим образом С1 НзСН2С00Н, СНзС Н.гСООН, СН3СН2С10ООН. [c.92]

    Исключительная способность живой клетки к синтезу органических соединений уже давно привлекала внимание химиков, и поэтому еще в ранних органо-химических исследованиях делались попытки выяснить пути, по которым живая 1<летка создает большое чцсло органических веществ. Различные гипотезы об этих путях первоначально не были достаточно обоснованы, но за последние годы был сделан ряд открытий (главным образом с помощью меченых соединений), позволпвщих придти к важным заключениям о биогенезе природных веществ. [c.1134]

    ГОРЯЧИЕ АТОМЫ — атомы, возника-10щие в результате ядерных превращении. Они называются Г. а., т. к. их энергия соответствует энергии атомов, нагретых до миллионов градусов. Г. а. называют также атомами отдачи, поскольку они воспринимают кинетическую энергию отдачи материнского ядра. Благодаря высокой кинетической энергии, возбужденному электронному состоянию и высокому положительному заряду, Г. а. способны вступать в такие химические реакции, в которые обычные атомы не вступают. Г. а. все большее применение находят при синтезе меченых соединений. Перспективно использование реакций Г. а. в процессах синтеза аммиака, полимеризации, проведении реакций без катализатора и др. [c.80]

    Ка, ТЬ, Ра, и), трансурановых элементов, водородоподобных атомов (мюоиия, позитрония), т. и. мезоатомов (см. Мезонная химия). Прикладная Р. включает технологию ядерного горючего, синтез меченых соедпнений и примеи. радионуклидов в качестве индикаторов (см. Меченые соединения) и источников излучения и энергии. Радиоактивность изучаемых Р. в-в позволяет использовать специфич. высокочувствительные методы измерения их количеств и заставляет применять особую технику для безопасной работы. [c.491]

    Зарождение Р. связано с хим. выделением и изучением св-в радиоактивных элементов Ra и Ро (П. Кюри и М. Скло-довская-Кюри, 1898). Термин Р. введен А. Камероном (1910), к-рый назвал так раздел науки, изучающий природу и св-ва отдельных радионуклидов - членов радиоактивных рядов и и Th (в то время их называли радиоэлементами). В ходе дальнейшего развития Р. были установлены законы соосаждения и адсорбции радионуклидов из ультраразбав-ленных р-ров, заложены основы метода изотопных индикаторов, создан эманационный метод изучения физ.-хим. св-в твердых тел (работы К. Фаянса, Ф. Панета, В. Г. Хлопина, О. Гана и др.). Использование явления радиоактивности послужило основой новых физ.-хим. методов исследования строения и св-в в-Ba, кинетики и механизма хим. р-ций. Среди них-метод радиоактивных индикаторов, основанный на введении в систему радионуклида данного элемента, что в ряде случаев приводит к фиксир. термодинамич. и кинетич. изотопным эффектам. Были разработаны методы синтеза и спец. номенклатура хим. соед., отличающихся изотопным составом от полученных из прир. сырья (см. Меченые соединения). [c.172]

    Исследования Я. р. дают разнообразную информацию о внутр. строении ядер. Я. р. с участием нейтронов позволяют получать огромное кол-во энергии в ядерных реакторах. В результате Я. р. деления под действием нейтронов образуется большое число разл. радионуклвдов, к-рые можно использовать, в частности в химии, как изотопные индикаторы. В ряде случаев Я. р. позволяют получать меченые соединения. Я. р. лежат в основе активационного ашишза. С помощью Я. р. осуществлен синтез искусственных хим. элементов (технеция, прометия, трансурановых элементов, трансактиновдов). [c.516]

    Метод радиоактивных индикаторов позволяет количественно н с необычайно высокой чувствительностью контролировать превращения, миграцию и распределение меченных радиоизотопами веществ в исследуемой системе и решать задачи, которые ранее применявшимися методами решить не удавалось. Принцип этого метода состоит в шеткеу> изучаемого вещества радиоизотопом, т. е. в замене какого-либо атома в молекуле радиоизотопом того же элемента. Это шеченое- вещество по химическим свойствам не отличается от нерадиоактивного соединения, и его можно очень точно и с большой чувствительностью определять, измеряя ионизирующее излучение радиоизотопа. Одновременно с развитием метода радиоактивных индикаторов развилась новая отрасль радиохимии — синтез меченых соединений. К настоящему времени методом обычного органического синтеза, биосинтеза и обменных реакций получено около 2000 органических веществ, меченных радиоизотопами углерода, водорода, серы, фосфора и галогенов. Настоящая глава посвящена изложению основ работы с радиоизотопами и описанию используемых в настоящее время методов синтеза органических меченых соединений. [c.643]

    Только синтез, дающий продукт с точно известным положением атома-метки, введенного в молекулу в процессе синтеза, позволяет говорить о строго определенной или специфической метке соединений. Обменные реакции можно использовать для специфической метки соединений только в том случае, когда в молекуле отсутствует другой атом, способный к обменной реакции или когда допустим обмен нескольких равноценных атомов в большинстве случаев обменные реакции приводят только к неспецифически меченым соединениям, поскольку обмен происходит до определенной степени со всеми или с большей частью присутствующих в молекуле атомов данного вида. Подобным же образом биосинтезы дают, за редкими исключениями, неспецифически меченные соединения. Возможности выбора радиоизотопов для синтеза меченых соединений достаточно велики. Большая группа радиоизотопов, используемых для этой цели, описана в разд. 4.2. [c.660]

    При синтезе меченых соединений можно проводить также количественный расчет радиохроматограмм, который используют для контроля хода и окончания реакции, определения ее выхода без выделения продуктов, для определения состава и возможности дальнейшего использования маточных растюров, а также для определения количества радиоактивных загрязнений, возникших в ходе синтеза или в результате радиолиза. Количественная радиохроматографиявпекоторых случаях может заменить используемый в настоящее время трудоемкий метод изучения обменных реакций по изменению удельной активности одновременно при этом можно контролировать [c.672]

    Большая часть меченых соединений, особенно простого строения, была получена синтетически. Из известных синтезов для этих целей выбирают те, которые при простом и безопасном выполнении дают очень чистые или по крайней мере легко изолируемые продукты с высоким выходом. Большое внимание уделяют выбору оптимальных условий реакции, соответствующих методов и реактивов. Тщательно разработана и экспериментальная техника работы с небольшими количествами опасных для здоровья и дорогостоящих веществ. Изотоп вводят в синтез на возможно более поздней стадии в тех случаях, когда это возможно, реакцию проводят без выделения промежуточных продуктов. Маточные растворы и остатки анализируют и перерабатывают повторно. Большую часть вещества, содержащегося в маточном растворе, можно выделить, добавляя в насыщенный при более высокой температуре раствор соответствующее неактивное вещество, которое в маточном растворе будет равномерно перемешано с активным веществом. При пятикратном разбавлении доля неактивного носителя в потерях в маточном растворе при последующей кристаллизации составит Таким образом, из маточного раствора можно извлечь дополнительно 5 первоначально имевшейся в маточном растворе активности однако при этом удельная активность уменьшится в 5 раз. В некоторых случаях реакцию преднамеренно проводят с высокой удельной активностью добавление на определенной стадии очень чистого неактивного носителя позволяет увеличить химический выход и химическую чистоту продукта. Уровень молярных удельных активностей продуктов реакции соответствует удельным активностям исходных веществ и может достигать значительных величин. Большая часть синтезов проводилась с радиоуглеродом и изотопами водорода некоторые типичные случаи будут приведены ниже. Замечательный обзор большинства методов имеется в монографии Меррея и Уильямса [14] и включает синтезы меченых различными изотопами кислот и их производных, аминов, альдегидов, кетонов, простых эфиров, гетероциклических соединений, углеводородов, спиртов, ониевых соединений, сахаров и их производных, стероидов, витаминов и других веществ. Эта книга дает полное представление о синтезах соединений, меченных S Н , и радиогалогенами. Это [c.678]

    При введении радиоактивного изотопа в виде простого химического соединения в живой организм образуются более сложные продукты, содержащие радиоактивный атом. Биосинтетический способ получения меченых соединений применяют в тех случаях, когда химический синтез этих веществ слишком сложен. Этот способ был использован для метки многих природных соединений, например белков, полисахаридов, нуклеиновых кислот, пуринов, пиримидинов, витаминов, гормонов, стероидов, алкалоидов, терпенов, карбоновых кислот, аминокислот, жиров и жирных кислот из радиоизотопов чаще всего применяют и Р -. Биосинтезы приводят обычно к неспецифически меченным соединениям с низким выходом требуемого продукта. Однако, если большая часть образующихся меченых соединений может быть использована для различных целей, то их биосинтез экономически выгоден. [c.683]

    Практическое применение нашли обменные реакции для синтеза органических соединений, меченных изотопами водорода, 5 и радиогалогенами. Преимущества этого способа проявляются ярче всего при синтезе меченых веществ, получение которых синтетическими или биосинтетическими методами затруднено или невозможно. Выходы получаются высокие, чистота веществ в случае классических обменных реакций обычно выше, чем в химических синтезах, хотя при обменных реакциях нельзя забывать о возможности изомеризации или перегруппировок. Если в молекуле имеется несколько атомов обмениваемого элемента, то специфически меченные соединения можно получить только в ограниченном числе случаев. Обычно получают неспецифически меченные соединения, что, однако, во многих случаях не является недостатком. Большое внимание необходимо уделять стабильности связи радиоизотопа в молекуле меченого вещества в условиях применения. Определенный недостаток этого метода состоит в том, что атомы, замененные в мягких условиях, в условиях применения также легко будут потеряны при жестких условиях замены могут происходить различные побочные реакции или распад молекулы, предназначенной для получения меченого-соединения. [c.684]

    Для синтеза меченых соединений практически неприменимы атомы водорода, соединенные с кислородом, серой и азотом, так как обмен в этих случаях проходит быстро в обоих направлениях в мягких условиях, т. е. не имеет смысла метить соединения тритием в группах —СООН, —ОН, —5Н, —NH2, = NH и т. д., поскольку, например, уже при соприкосновении с водой радиоизотоп очень быстро будет замещен протием. Более стабильным и поэтому более пригодным для приготовления меченых соединений является водород, связанный с углеродом. [c.684]

    Проведение каталитических реакций несложно. Поскольку катализ металлами весьма эффективен и сопровождается лишь небольшой деструкцией, этот метод пригоден для синтеза большого числа меченых соединений различных типов, причем часто можно достигнуть больших величин удельных активностей, чем в методе Вильцбаха [84]. Обменной реакцией с окисью трития на платиновом катализаторе были синтезированы меченые стероиды, пурины, пиримидины и нуклеотиды. [c.685]

    Большее радиационное расщепление (на два или даже на четыре порядка) обнаружено ири синтезе меченых соединений с использованием метода отдачи атомов трития или радиоуглерода, приготовленных при помощи ядерных реакций высокая кинетическая энергия атомов отдачи выделяется в присутствии чистого органического вещества [87]. При этом источником медленных нейтронов служит ядерный реактор (удельные активности достигают порядка микрокюри на 1 г). Описанный метод по вышеуказанным причинам применялся лишь изредка и был вытеснен методом Вильцбаха. [c.687]

    Приведите схемы возможных лабораторных синтезов следующих меченых соединений, используя в качестве источника С Ва СОз или СН3ОН  [c.582]


Смотреть страницы где упоминается термин Меченые соединения синтезы: [c.92]    [c.97]    [c.236]    [c.662]    [c.670]    [c.673]    [c.679]   
Лабораторная техника органической химии (1966) -- [ c.678 , c.682 ]




ПОИСК





Смотрите так же термины и статьи:

Алюмогидрид лития применение для синтеза меченых соединений

Изотопный для синтеза меченых соединений

Использование изотопного обмена для синтеза меченых соединений

Лукьянов, Ю. М. Емельянов. Изучение синтеза кислородсодержащих органических соединений в тихом электрическом разряде из газовых смесей метана с мечеными окислами углерода

Методы и особенности синтеза меченых соединений, их номенклатура

Меченые соединения аппаратура для органического синтез

Меченые соединения и горячий синтез

Меченые соединения синтез в потоке ускоренных ионо

ПРИМЕНЕНИЕ РАДИОАКТИВНЫХ ИЗОТОПОВ В ХИМИЧЕСКИХ ИССЛЕДОВАНИЯХ Синтез и анализ меченых соединений

Получение меченых соединений методами химического синтеза

Радиоизотопы применяемые для синтеза меченых органических соединений

Синтез меченого элементорганического соединения

Синтез меченых органических соединений

Синтез меченых соединений при (3-распаде изотопов, входящих в молекулы

Синтез меченых тритием биологически активных соединений для исследования актуальных проблем биологии и медицины

Синтез соединений меченых многократно

Синтез соединений, содержащих меченые атомы (изотопы)

Ядерный синтез микросинтез меченых соединений

меченый



© 2025 chem21.info Реклама на сайте