Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мочевая кислота гидролиз

    В организмах, гидролизующих мочевую кислоту до мочевины или аммиака, этот путь используется только для разрушения пуринов, образующихся при распаде нуклеотидов. Избыток азота, возникающий при катаболизме аминокислот, экскретируется либо непосредственно в виде аммиака, либо превращаясь в мочевину (разд. В, 2). [c.170]

    Для идентификации мочевой кислоты иримеиима м у р е к с и д и а я реакция, которая, впрочем, дает положительные результаты и со многими другими пуриновыми соединениями. Эта реакция заключается в том, что остаток после упаривания мочевой кислоты с азотной кислотой при действии аммиака окрашивается в пурпурно-красный цвет вследствие образования мурексида — аммониевой соли так называемой пурпуровой кислоты. При действии азотной кислоты мочевая кислота частично превращается в аллоксантин, молекулярное соединенне аллоксана с диалуровой кислотой, вероятно имеющее приведенное ниже строение при последующей обработке аммиаком аллоксантин образует пурпуровокислый аммоний (мурексид), которому приписывают формулу (I). Для свободной пурпуровой кислоты,очень легко распадающейся при действии гидролизующих агентов на аллоксан и урамил, предпочтительна формула (И)  [c.1040]


    Против использования для кормовых целей биомассы дрожжей и бактерий имеется ряд возражений, в частности в связи с высоким содержанием в ней нуклеиновых кислот. Дрожжи содержат до 12% нуклеиновых кислот, быстрорастущие бактерии— до 16% ( допустимая норма нуклеиновых кислот в питании человека составляет 2 г в день). При разрушении в организме животных таких количеств нуклеиновых кислот образуется много нежелательных продуктов распада — мочевой кислоты и др. В то же время в грибах при тех же условиях выращивания содержится 1,5—2,8% нуклеиновых кислот. Кроме того, у дрожжей имеется толстая и прочная клеточная стенка, которая с трудом разрушается в организме животного и вследствие этого снижается доступность питательных веществ дрожжей. Дрожжевой белок не сбалансирован по серусодержащим аминокислотам. Среди дрожжей мало культур с целлюлазной активностью. Из всего сказанного выше ясно, что эта группа микроорганизмов не может использоваться для культивирования на целлюлозных средах. Необходимо также отметить, что дрожжи из продуктов гидролиза древесины могут усваивать только целлюлозу, геми- [c.117]

    В результате кислотного [197] или ферментативного [1981 гидролиза рибозида мочевой кислоты (выделенного из бычьей крови [197] и из покоящихся куколок бабочек семейства [199]) [c.60]

    Ксантин образует бесцветные кристаллы с одной молекулой воды. Подобно мочевой кислоте, он образует с щелочными металами труднорастворимые соли однако он дает также хлоргидрат, мгновенно гидролизующийся водой. Таким образом, в отличие от мочевой кислоты ксантин обладает и слабыми основными свойствами. [c.771]

    Гипоксантин представляет собой кристаллический порошок, который при нагревании не плавится, а разлагается. Растворимость в воде, хотя и мала, но превышает растворимость ксантина и мочевой кислоты. Он образует соли как с металлами, так и с минеральными кислотами. Эти соли не гидролизуются водой. (Таким образом, растворимость в воде и основность возрастают в ряду мочевая кислота, ксантин, гипоксантин, пурин кислотность убывает, разумеется, в том же порядке.) [c.772]

    Обмен пуринов. Человек выделяет ежедневно 0,3—0,6 г мочевой кислоты, образующейся частично из пуринов, содержащихся в пище (экзогенная мочевая кислота), и частично в результате нормального распада аденина и гуанина, в свою очередь получающихся при гидролизе нуклеиновых кислот (эндогенная мочевая кислота). [c.772]

    В то время как у человека конечным продуктом метаболизма пуринов является мочевая кислота, у многих других видов имеется медьсодержащий фермент уратоксидаза, превращающая мочевую кислоту в аллантоин — экскреторный продукт большинства видов млекопитающих, за исключением приматов. У многих рыб аллантоин гидролизуется, превращаясь в аллантоиновую кислоту, причем некоторые из них экскретн-руют это соединение как конечный продукт. Однако у большинства рыб процесс гидролиза идет дальше, давая в качестве продуктов мочевину и глиоксилат. У некоторых беспозвоночных мочевина может быть далее гидоолизована до аммиака. [c.170]


    В ворсинки кишечника всасываются и мононуклеотиды, и нуклеозиды, и продукты их гидролиза (азотистые основания, пентозы и фосфорная кислота). Пуриновые основания в результате дезаминирования и окисления превращаются в мочевую кислоту, которая поступает в [c.229]

    Гипоксантин, ксантин и мочевая кислота образуются в организмах, как результат происходящего под влиянием ферментов гидролиза наиболее сложных белков, так называемых нуклеопротеидов, которые при этом распадаются на обыкновенные белки и нуклеиновые кислоты, [c.435]

    Чужеродные вещества (ксенобиотики) в печени нередко превращаются в менее токсичные и даже индифферентные вещества. По-видимому, только в этом смысле можно говорить об обезвреживании их в печени. Происходит это путем окисления, восстановления, метилирования, ацетилирования и конъюгации с теми или иными веществами. Необходимо отметить, что в печени окисление, восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные ферменты. Наряду с микро-сомальным в печени существует также пероксисомальное окисление. Пероксисомы—микротельца, обнаруженные в гепатоцитах их можно рассматривать как специализированные окислительные органеллы. Эти микротельца содержат оксидазу мочевой кислоты, лактатоксидазу, окси-дазу В-аминокислот, а также каталазу. Последняя катализирует расщепление перекиси водорода, которая образуется при действии указанных [c.559]

    Аллоксан-моногидрат был получен окислением мочевой кислоты хлором или хлорноватокислым калием и солянор1 кислотой окислением аллоксантина , ксантина , урамила и тиоура-мила гидролизом дибромбарбитуровой кислоты . Описанный здесь метод первоначально разработали Бильман и Берг . [c.14]

    Бредерек, Хенниг и Пфле1 дерер описали метод получения дг а.миноурац 1ла нз мочевой кислоты, который заключается R ацетилировании и последующем гидролизе ацетильного производного. Авторы настоящего синтеза пытались воспользоваться этим способо.м для получения препарата в большом масштабе, однако безуспешно даже в том случае, когда стадия ацетилирования проводилась дважды с одни.м и тe же материалом. [c.77]

    В качестве источников углерода дрожжевые клетки могут использовать и низшие спирты — метанол и этанол, получаемые в биотехнологии из природного газа или растительных отходов. Дрожжевая масса, полученная после культивирования дрожжей на спиртах, содержит больше белков (56 — 62 % от сухой массы) и меньше вредных примесей, чем кормовые дрожжи, выращенные на парафинах нефти, такие, как производные бензола, /)-аминокисло-ты, аномальные липиды, токсины и канцерогенные вещества. Кроме того, кормовые дрожжи имеют повышенное содержание нуклеиновых кислот — 3 — 6% от сухой массы, которые в этой концентрации вредно воздействуют на организм животных. В результате их гидролиза образуется много пуриновых оснований, превращающихся затем в мочевую кислоту и ее соли, которые могут быть причиной мочекаменной болезни, остеохондроза и других заболеваний. Тем не менее кормовые дрожжи хорошо усваиваются и перевариваются в организме животных, а по содержанию таких аминокислот, как лизин, треонин, валин и лейцин, значительно превышают многие растительные белки. Вместе с тем белки дрожжей частично не сбалансированы по метионину, в них мало цистеина и селенцистеина. Оптимальная норма добавления дрожжевой массы в корм сельскохозяйственных животных обычно составляет не более 5 —10 % от сухого вещества. [c.11]

    Образовавшиеся при гидролизе пуриновые нуклеозиды—аденозин и гуанозин—подвергаются ферментативному распаду в организме животных вплоть до образования конечного продукта—мочевой кислоты, которая выводится с мочой из организма. У человека, приматов, большинства животных, птиц и некоторых рептилий мочевая кислота является конечным продуктом пуринового обмена. У других рептилий и некоторых млекопитающих мочевая кислота расщепляется до аллантоина и у рыб—до аллантоиновой кислоты и мочевины. Последовательность всех этих превращений, катализируемых специфическими ферментами, можно представить в виде следующей схемы  [c.500]

    Средние сол1 , образованные мочевой кислотой с щелочными металлами (Na, К, Li), хорошо растворимы в воде растворы их вследствие гидролиза имеют щелочную реакцию из растворов уже при пропускании СОа выпадает мочевая кислота. Это свидетельствует о том, что соли мочевой кислоты обладают свойствами фенолятов. Кислые соли щелочных металлов, за исключением литиевых, плохо растворимы. В связи с этим при подагре прописывают неорганические соли лития (например, Li Os), рассчитывая на то, что образуются хорошо растворимые соли мочевой кислоты, быстрее выделяющиеся из организма. [c.408]

    Через 58 лет после открытия мочевой кислоты Либихом [5] был проведен первый элементарный анализ ее и определена эмпирическая формула С5Н4М40з. Вслед за тем Велер и Либих [6] осуществили окисление мочевой кислоты двуокисью свинца до аллантоина и нашли, что в результате щелочного гидролиза [c.148]


    Система пурина находится в таких соединениях, как аденозин, получаемый гидролизом нуклеиновых кислот. Нуклеиновые кислоты — сложные соедипения, находящиеся в ядре клеток. Кофеин и мочевая кислота такя соединения группы пурина. Первый содержится в чае и кофе последний — конечный продукт метаболизма азотсодержащих веществ в организме. Оба— возбуждаюпше вещества. [c.498]

    Ксантин сочетается по СН-группе в положении 8 с хлористым бензолдиазонием, давая азопроизводное, превращающееся при восстановлении в 8-аминоксантин. Это соединение дает с азотистой кислотой диазониевую соль, в результате гидролиза которой получается мочевая кислота (Г. Фишер). [c.770]

    В результате метилирования можно заместить все четыре атома водорода мочевой кислоты на метильные группы. Метилирование можно осуществить нри обработке либо мочевой кислоты диазометапом, либо урата свинца йодистым метилом или диметилсульфатом. Во всех метилированных производных мочевой кислоты метильные группы связаны исключительно с атомами азота при энергичном щелочном гидролизе четырехметилированного производного получается только метиламин. [c.771]

    Штреккер (1868) сообщил, что мочевая кислота в результате обработки соляной кислотой при 160°С гидролизуется с образованием аммиака, двуокиси углерода и глицина H2N—СНг—СООН. Это наблюдение устанавливало наличие в мочевой кислоте группировки N—С—С, наряду с группировкой N—С—N, о наличии которой свидетельствовало расщепление кислоты до мочевины. Синтез барбитуровой кислоты, осуществленный Гримо (1879), еще дальше продвинул решение вопроса. Наконец, Э. Фишер в работе, завершенной в 1899 г., установил правильность структуры, которая была предложена в 1875 г. Медикусом, и выяснил многие взаимоотношения между продуктами расщепления, охарактеризованными предыдущими исследователями. [c.627]

    Уже Шееле наблюдал образование аллоксана, позднее охарактеризованного Либихом и Вёлером, и пре,п,ложил удобную пробу на мочевую кислоту, основанную на специфической цветной реакции, которая характерна для аллоксана. Аллоксан представляет собой устойчивый гидрат 1,2,3-трикетона. Фишер в несколько стадий превратил аллоксан в барбитуровую кислоту, но наиболее просто взаимоотношения этих двух веществ устанавливаются тем фактом, что аллоксан образуется из барбитуровой кислоты при окислении. Доказательство строения барбитуровой кислоты путем синтеза устанавливало, таким образом, строение одного кольца мочевой кислоты. Природа второго кольца следует из результатов другой реакции расщепления, в которой раскрывается шестичленное кольцо. Либих и Вёлер нашли, что мочевая кислота при мягком окислении теряет один атом углерода в виде двуокиси углерода и превращается в продукт, названный аллантоином, поскольку была установлена его идентичность с веществом, выделенным в 1799 г. из аллантоидной жидкости коров. В этом классическом исследовании аллантони был различными путями пол-вергнут расщеплению, но его строение следует уже из результатов простейшей реакции — гидролиза с образованием 2 моль мочевины и [c.628]

    Спустя полстолетия после того, как классические исследования строения в результате опытов Фишера были доведены до успешного завершения, некоторые реакции расщепления, на которых было основано установление структуры, нашли новое использование при выяснении путей биосинтеза мочевой кислоты. Среди продуктов реакций расщепления, изображенных выше, имеются мочевина, глицин, двуокись углерода и глиоксиловая кислота, и поэтому кажется вполне вероятным, что эти вещества являются предшественниками мочевой кислоты, т. е. что из них строятся некоторые части ее молекулы. Вопрос о том, действительно ли данное вещество является биогенетическим предшественником, может быть решен путем синтеза этого вещества в моченной изотопами форме и введения его в организм животного (опыты с мочевой кислотой проводились на голубях и на людях). Биосинтетическую мочевую кислоту затем выделяли из мочи и подвергали расщеплению, з результате чего обнаруживали положения, в которых находились меченые атомы. Если после введения изотопно-меченого карбоната биосинтетическую мочевую кислоту окислить до аллантоина, то изотоп обнаружится в образующейся двуокиси углерода, из чего можно заключить, что метка находилась на углероде 6. В отличие от этого, при применении меченой муравьиной кислоты образуется вещество, которое при окислении двуокисью свинца выделяет лишь неизотопную двуокись углерода. Однако при окислении этого же образца мочевой кислоты азотной кислотой обнаруживается, что меченый углерод муравьиной кислоты входит в другие положения молекулы. Из мочевины, образовавшейся как при окислении мочевой кислоты, так и при гидролизе аллоксана, в результате обработки энзимом уреазой получается наряду с аммиаком изотопная двуокись углерода, что указывает на то, что углероды 2 и 8 происходят из муравьиной кислоты. [c.629]

    Опытами с донорами меченого аммиака было установлено, что аммиак является предшественником N1, N3 и N9, но не N7. При гидролизе мочевой кислоты, полученной при помощи меченого -рли-цина, был выделен глицин, несущий изотоп азота . таким образом, N7 образуется из аминогруппы глицина. То, что С4 и С5 образуются соответственно из карбоксильной и метиленовой групп глицина, было установлено параллельными опытами с меченым в кал дом из этих положений глицином. Полученная при этом мочевая кислота была окислена до аллантоина, который гидролизовали до глиоксиловой кислоты, выделенной в виде семикарбазона НООС—СН = Ы—ЫН—СО—МНг. При окислении этого производного перманганатом двуокись углерода, образующаяся из карбоксильной группы. глиоксиловой кислоты, выделяется быстро (7 Л1ин), а образующаяся из альдегидной группы — медленно (несколько часов), и таким путем можно различить эти два положения. Полученные результаты показали, что углерод 4 происходит из карбоксильной группы глицина, а углерод 5 из его метиленовой группы. Так было объяснено происхождение всех атомов бицикли-ческой системы мочевой кислоты. Осуществлен также энзиматический синтез мочевой кислоты из указанных предшественников. [c.629]

    Определяют содержание небелкового азота. Этот анализ позволяет найти количество всех азотсодержащих веществ крови, кроме белков. Анализ проводят методом Кьельдаля (титрование) или колориметрическим методом. Определяют содержание мочевины в крови. Мочевину гидролизуют (катализатор уреаза) до аммиака. Аммиак переводят в хлорид аммония, который с реактивом Нес-слера дает окрашенный продукт. Из креатинина получают комплекс с пикриновой кислотой. Этот продукт окрашен в красный цвет. Мочевая кислота дает с фосфорновол1 рамовой кислотой комплексное соединение голубого цвета. Содержание глюкозы в крови может быть определено различными методами. Часто применяют реакцию восстановления фелинговой жидкости. Неорганические фосфаты образуют с молибдатом аммония и 1,2,-аминонафтол-4-сулы юкислотой продукты, окрашенные в голубой цвет. [c.367]

    Распад пуриновых нуклеотидов (рис. 22-23) начинается с отщепления фосфатной группы под действием 5 -ну-клеотидазы. Из аденилата таким путем образуется аденозин, который, дезаминируясь, превращается в инозин. Инозин затем подвергается гидролизу, что приводит к образованию пуринового основания гипоксантина и D-рибозы. Гипоксантин окисляется до ксантина и далее до мочевой кислоты под действием ксантиноксидазы, сложного флавинзави-симого фермента, в простетической группе которого содержится один атом молибдена и четыре железосерных центра (разд. 17.8). Акцептором водорода в этой [c.672]

    В дальнейшем методы получения пуриновых соединений были направлены к устранению трудных операций хлорирования и кислотного гидролиза (в методе из 8-метилкофеина). Началось изучение и освоение перехода от мочевой кислоты к ме-тилмочевине для производства теобромина и диметилмочевине при производстве кофеина и теофиллина. Таким образом, применяя мочевину разной степени замещения метильйыми группами, можно получить все три пуриновых алкалоида. Фактически эти поиски привели к переходу от полусинтеза к временно оставленной схеме Траубе, представлявшей в свое время (1900 г.) только теоретический интерес. Синтез Траубе дает сравнительно простое решение построения бициклической системы имидазолопиримидина и имеет преимущество по сравнению [c.601]

    Джойнер [99] также изучал действие различных веществ как ингибиторов. Он показал, что желатина, клей и пептон, взятые в равных концентрациях, вызывают одинаковый эффект. Было найдено, что крахмал, декстрин и сахароза также могут служить в качестве ингибиторов при условии, если их использовать в количествах, превышающих количество желатины в 100—300 раз. Оловянная кислота в коллоидном состоянии вполне эффективна, хотя и не в такой степени, как желатина. Было показано, что даже пептизированная кремневая кислота является ингибитором. Такие вещества, как животный уголь, древесный уголь, асбестовый порошок и порошкообразная пемза, оказывают полезное действие, если они присутствуют в относительно больших количествах. Мочевина, сахарин, азид натрия, олеиновокислый и пальмитиновокислый натрий, хлористый литий и другие подобные вещества не оказывают какого-либо действия. Джойнер исс.ледовал также поведение натриевой соли глутаминовой кислоты, тирозина, триптофана и мочевой кислоты, причем, хотя эти вещества и образуют комплексное соединение с ионами меди и других металлов, их действие в качестве ингибиторов реакции (3) оказалось незначительным [99]. Джойнер показал, что молекулярно-диспергированные вещества не являются ингибиторами, однако он предложил патентную заявку на процесс [102], в котором продукт гидролиза клея применяется в качестве катализатора для устранения нежелательного вспенивания, наблюдаемого при использовании соответствующих ингибиторов в больших количествах (см. также [103]). [c.34]


Смотреть страницы где упоминается термин Мочевая кислота гидролиз: [c.24]    [c.24]    [c.173]    [c.253]    [c.231]    [c.276]    [c.253]    [c.231]    [c.276]    [c.216]    [c.438]    [c.190]    [c.597]    [c.399]    [c.437]    [c.60]    [c.194]    [c.202]    [c.79]   
Биохимия Том 3 (1980) -- [ c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Мочевая кислота

Мочеви



© 2024 chem21.info Реклама на сайте