Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бислои в мембранах

    Уже давно было отмечено, что свободные полирибосомы продуцируют в основном водорастворимые белки для внутренних потребностей самой цитоплазмы, в то время как мембраносвязанные частицы синтезируют либо белки для мембран, либо секреторные белки, выводимые через мембраны из клетки. Очевидно, что растворимые цитоплазматические белки, синтезируемые на свободных полирибосомах, сворачиваются по мере выхода из рибосомы в водном окружении, в результате формируя типичную глобулярную структуру с гидрофобным ядром внутри и более или менее полярной поверхностью. В то же время, синтез белков на мембраносвязанных рибосома х приводит к тому, что растущий пептид вводится в контакт с гидрофобным окружением липидного бислоя мембраны, и значит, должен сворачиваться, по крайней [c.274]


    Гены, кодирующие несколько вирусных белков слияния, были клонированы и затем использованы Оля трансфекции эукариотических клеток в культуре. Трансфицированные клетки экспрессировали вирусные белки на поверхности мембраны. При кратковременной инкубации при низких pH эти клетки сливались между собой, образуя гигантскую многоядерную клетку. Для наиболее изученного белка слияния из вируса гриппа была определена трехмерная структура методом рентгеноструктурного анализа (см. разд. 8.6.12). Было показано, что при низком pH в белке слияния индуцируются крупные конформационные изменения, приводящие к экспонированию предварительно спрятанной гидрофобной области на поверхность белка. При этом становятся возможными его взаимодействия с липидным бислоем мембраны-мишени. По-видимому, кластер таких гидрофобных областей расположенных в близком соседстве друг с другом в молекуле белка слияния, приводит два липидных бислоя в тесное соприкосновение и дестабилизирует их так что бислои сливаются (рис. 6-87). [c.424]

    Комплексы, атакующие мембраны, после негативного контрастирования имеют на электронных микрофотографиях характерный вид они образуют водные поры, пронизывающие мембрану (рис. 18-44). По этой причине, а также благодаря нарушению структуры близлежащего липидного бислоя мембрана становится легко проницаемой. Поскольку малые молекулы могут проходить сквозь мембрану около комплексов и через них. а макромолекулы остаются в клетке, нарушается нормальный клеточный механизм контроля водного баланса (см. схему 6-1. т. 1). Поэтому клетка путем осмоса поглощает воду и в результате набухает и лопается. Этот процесс настолько эффективен, что очень небольшое число комплексов, атакующих мембраны (возможно, даже один), может убить эритроцит. Комплексы могут разрушать даже вирус, имеющий оболочку, для которого не характерна большая разность осмотического давления по обе стороны мембраны и который поэтому не подвержен осмотическому лизису вероятно, это происходит из-за дезорганизации мембраны вируса. [c.258]

    Строение фосфолипидного бислоя мембраны [c.107]

    Рассматривать динамичность бислоя мембраны без связи с белками нельзя. При липидных структурных перестройках в процесс вовлекаются интегральные, периферические и поверхностные белки мембраны. Более того, белки могут выступать в роли триггеров температурных структурных перестроек мембран, и белку часто принадлежит ведущая роль не только в инициации, но и в реализации структурной перестройки. [c.108]

    ПКС (фосфорилированием), а также зависит от структуры и состава липидного бислоя мембраны. [c.108]


    Выражение (9.43) позволяет высказать предположения о возможном механизме преодоления сил структурного отталкивания в биологических системах в процессе слияния мембран. Известно, что слияние мембран происходит лишь в том случае, когда в растворе, омывающем мембраны, в достаточном количестве присутствуют ионы Са + [430]. Одна из особенностей взаимодействия этих ионов с фосфолипидными бислоями заключается в том, что ионы Са + могут легко связываться с полярными головками фосфолипидных молекул и способны соединять две такие молекулы, образуя между ними кальциевые мостики [430]. Следовательно, адсорбция ионов Са + на поверхности бислоя приводит к стабилизации, цементированию его структуры. Другая особенность связана с тем, что ионы Са +, проникая в область полярных головок бислоя, вытесняют оттуда молекулы воды, т. е. дегидратируют поверхности бислоя [460]. [c.167]

    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

Рис. 46. Схема установки для исследования электрохимических свойств липидных бислоев (а) и структура липидного бислоя (б) / — тефлоновый стакан 2 — отверстие, на кото-ром формируется липидная мембрана 3 — электроды 4 — углеводородное бислойное ядро 5 полярные группы фосфолипидных молекул Рис. 46. <a href="/info/13990">Схема установки</a> для <a href="/info/1681426">исследования электрохимических свойств</a> <a href="/info/179541">липидных бислоев</a> (а) и <a href="/info/1401735">структура липидного</a> бислоя (б) / — тефлоновый стакан 2 — отверстие, на кото-ром формируется <a href="/info/265814">липидная мембрана</a> 3 — электроды 4 — углеводородное бислойное ядро 5 <a href="/info/102651">полярные группы</a> фосфолипидных молекул
    Строение клеточной мембраны показано на рис. 1.13. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны ад- [c.158]

    Следует сказать несколько слов о биологическом значении мицеллообразования. Биологические мембраны — сложные бислои с гидрофобным ядром и гидрофильным окружением. Действительно, биологическая активность и специфичность многих биохимических процессов требует соответствующей структурной организации. Агрегация обеспечивает один из уровней организации молекул, причем эта агрегация обратима. [c.327]

    В качестве последней задачи рассмотрим липидные бислои в везикулах, размер которых настолько велик, что с эффектами кривизны можно не считаться. Ради простоты - ограничимся анализом симметричного случая. Если везикулярный бислой закрыт по отношению к липидному компоненту, то фундаментальное уравнение (16) должно быть в принципе применимо. Однако в случае везикулы поверхность мембраны уже не является независимой переменной, а будет функцией Т и Лд. Если это обстоятельство учтено явно, то мы получаем фундаментальное уравнение в надлежащей для данного случая форме, а именно  [c.338]

    Второй хорошей возможностью было бы проведение измерений зависимости у от при переменных Г и 1з для частично закрытого бислоя, аналогичных пленочно-весовым измерениям на нерастворимых поверхностных пленках. В этом случае и уравнение (13) и (22) приложимы. Следует, однако, отметить, что потребуется интегрирование изотермы для того, чтобы найти все термодинамические свойства бислоя. Открытая по отношению к фазе органического растворителя бислойная мембрана, по-видимому, является менее удачной системой при отыскании необходимой термодинамической информации, в основном, из-за априорного присутствия органического растворителя в бислое. [c.339]

    I. Модель строения мембраны в виде липидного бислоя [c.338]

    Наиболее надежные доказательства адекватности модели мембраны в виде липидного бислоя были получены в результате. исследования очень тонких искусственных мембран, которые получают обычно из раствора фосфолипида (например, фосфатидилхолина или смеси фосфолипидов с холестерином) в углеводородном растворителе. Каплю [c.340]

    Теория элементарной мембраны или липидно-белкового бислоя, предложенная в 1910 г. Д. Даниэли и наиболее подробно изученная Дж. Робертсоном. В 1959 г. он опубликовал видимое под микроскопом строение мембран в виде двух электронноплотных слоев, разделенных менее плотным слоем, определил размеры и состав этих слоев. Наружные гидрофильные части липидных молекул были связаны с белками, а гидрофобные образовали внутреннюю часть, или кор . Так как на границе жир-вода существует большое поверхностное натяжение, то гидрофобность липидных компонентов уравновешивается гидрофильностью белков. [c.107]


    Текучесть мембраны обеспечивается сложным распределением остатков жирных кислот между молекулами различных фосфолипидов и основана на том, что все липидные бислои представляют собой лиотропные жидкие кристаллы. При температуре, характеристической для отдельных фосфолипидов, совершается фазовый переход жесткий гель — текучее жидкокристаллическое состояние. Более детально текучесть и фазовые переходы рассмотрены в разд. 25.3.3.1, [c.110]

    В то же время известно, что как в прокариотических, так и в эукариотических клетках часть рибосом, организованных в полирибосомы, является свободными (хотя в эукариотах они, повидимому, связаны с каким-то цитоскелетом ), а другая часть прикреплена к мембранам. В прокариотах полирибосомы могут сидеть на внутренней стороне цитоплазматической мембраны клетки, в то время как в эукариотах местом размещения мембраносвязанных рибосом является так называемый шероховатый эндо-плазматический ретикулум цитоплазмы прикрепленные рибосомы могут продуцировать Лептид непосредственно в мембрану. Соответственно, в зависимости от локализации рибосом, ко-трансляцион-ное внерибосомное сворачивание растущего полипептида может происходить либо в водной среде цитоплазмы, либо в гидрофобном окружении липидного бислоя мембраны. [c.274]

    Однако в мучае лков, проходящих сквозь мембрану снова в водную фазу (межмембранный просвет эндоплазматического ретикулума эукариот, периплазматическое пространство грамотрицательных бактерий, или вообще наружу), ситуация оказывается более сложной. Здесь, по-видимому, осуществляется многоэтапное сворачивание белка, с вовлечением ко-трансляционного и пост-трансляционного процессинга полипептидной цепи и ее энзиматических ковалентных модификаций. Как бы то ни было, в случае водорастворимых секреторных белков, полипептидная цепь сначала оказывается в гидрофобном окружении липидного бислоя мембраны и сворачивается, по-видимому, без формирования компактного гидрофобного ядра, а затем, по выходе из мембраны, она вынуждена перестраиваться из этой промежуточной конформации в водорастворимую глобулу с гидрофобным ядром и полярной поверхностью. [c.275]

    Для грамицидина А, представляющего собой линейный пентадекапептид, путем анализа двумерных спектров Н-ЯМР была установлена пространственная структура (рнс. 67) а мицеллах додецилсульфата натрия. Такие мицеллы хорошо моделируют свойства липидного бислоя мембраны, в которых грамицидин А образует трансмембранный ионный канал. Канал построен из двух правых [c.117]

    А — схема устройства липидного бислоя мембраны. Полярные группы липидов обращены наружу в водную среду, тогда как ацильные углеводородные цепочки образуют гидрофобное пространство внутри бислоя Б — пространственная ориентация ацильных цепей и головной груг1пы фосфолипида в бислое мембраны. Темные кружки — атомы кислорода, жирными линиями показан остов глицеро-ла, тонкими линиями — этаноламин, ломаными линиями обозначены цепочки двух жирных кислот [c.31]

Рис. 8-57. Рост обеих половин липидного бислоя мембраны ЭР требует каталитического флиппипга молекул фосфолипидов из одного монослоя в другой. Так как новые молекулы липидов добавляются только к цитоплазматическому монослою и липиды не перескакивают из одного мопослоя в другой споптаппо, требуются связанные с мембраной переносчики фосфолипидов ( флиппазы ), чтобы переносить определенные молекулы липидов во внутренний слой мембраны. В результате мембрана растет равномерно, как бислой. Поскольку эти ферменты избирательно узнают и переносят только некоторые типы липидов, в ЭР образуется асимметричный бислой. В частности, внутренний слой (из которого Рис. 8-57. Рост обеих половин <a href="/info/179541">липидного бислоя</a> мембраны ЭР требует каталитического флиппипга <a href="/info/1381716">молекул фосфолипидов</a> из одного монослоя в другой. Так как новые молекулы липидов добавляются только к цитоплазматическому монослою и липиды не перескакивают из одного мопослоя в другой споптаппо, требуются связанные с мембраной <a href="/info/1339153">переносчики фосфолипидов</a> ( флиппазы ), чтобы <a href="/info/13410">переносить определенные</a> молекулы липидов во <a href="/info/279516">внутренний слой</a> мембраны. В результате мембрана растет равномерно, как бислой. Поскольку эти <a href="/info/1380666">ферменты избирательно</a> узнают и переносят только <a href="/info/1491159">некоторые типы</a> липидов, в ЭР образуется асимметричный бислой. В частности, <a href="/info/279516">внутренний слой</a> (из которого
    Изучение физико-химических свойств мембран удобно проводить на моделях монослоев, которые получаются при нанесении липидов на поверхность воды. Повышение давления и уплотнение монослоя приводят к тому, что подвижность углеводородных цепочек уменьшается, их взаимодействие друг с другом растет, а полярные головки фиксируются на поверхности раздела фаз. В пределе происходит такое уплотнение монослоя, где плошадь поперечного сечения молекулы липида не зависит от длины углеводородной цепи. Монослой представляет собой лишь половину липидного бислоя мембраны, и более удобной моделью служат различные искусственные бислойные липидные мембраны (БЛМ). Плоские ламеллярные структуры, могут сливаться, образуя замкнутые везикулярные частицы (липосомы), в которых липидные бислои отделяют внутреннюю водную фазу от наружного раствора. В везикулярные частицы можно встраивать белковые молекулы и другие компоненты биологических мембран для изучения механизмов их функционирования в биомембранах. Плоские БЛМ используются для изучения барьерных функций, электромеханических характеристик, а также межмолекулярных взаимодействий в мембранах. Электростатические взаимодействия осуществляются между заряженными группами либо в пределах одного полуслоя (латеральные), либо между разными слоями (трансмембранные). Дисперсионные вандерваальсовы взаимодействия между поверхностями мембран обнаруживаются на расстояниях до 1000 А. Это значительно превышает расстояния, где проявляется [c.131]

    Внутримол. динамика мембранных белков изучена меньше, чем липидов. Известно лишь, что боковые заместители на тех участках полипептидной цепи, к-рые погружены в липидный бислой, в значит, мере иммобилизованы. Мн. мембранные белки способны легко диффундировать вдоль мембраны и обладают довольно высокой вращат. подвижностью. Но даже в случае самых подвижных белков измеряемые коэф. диффузии примерно на порядок ниже, чем для липидных молекул. Времена вращат. релаксации для интегральных белков лежат в диапазоне от 20 до 500 мкс, а коэф. латеральной диффузии (вдоль бислоя) варьирует от 7-10 до 10 см -с . [c.30]

    Из уравнения (3) с наибольшей очевидностью следует интерпретация 0" как работы образования. Если ст < О, самопроизвольно мембрана образуется при контакте липида в стандартном объемном состоянии и водного раствора, или, иными словами, стандартное состояние будет неустойчиво. Для водно-лецитиновых систем, как правило ст " > 0 следовательно, необходимо произвести работу для того, чтобы разделить бислои, упакованные в ламеллярном жидком кристалле так, что толщина водной прослойки между соседними бислоями соответствует пределу набухания. После деления уравнений (1) и (2) на Л получаем  [c.324]

    Итак, зная термодинамические свойства липидного монослоя на основании полного пленочно-весового исследования, мы желаем вывести взаимосвязанные свойства бислойной мембраны. В этом отношении уравнение (11) является полезной отправной точкой, так как оно содержит сопоставление между монослоем и бислоем при заданной плотности головных групп липида = 2П. Дифференцируя уравнение (И), комбинируя результат с уравнением (12) и аналогичным выражением для с1РЦ , мы легко получаем следующее фундаментальное уравнение  [c.329]

    Вислой, образованный обратимо из стандартного состояния при 1 = М 2 следует предполагать слегка растянутым со значением у , соответствующим нескольким дин/см. Следовательно, для плоской мембраны y — 0) без подложки мы имеем > 1, так как растяжение, как правило, связано со снижением химического потенциала [уравнение (14)]. Это согласуется с тендэнцией бислоев к агрегации до ламеллярного стандартного состояния. [c.333]

    Температура перехода бислоев часто может быть достаточно четкой. Однако тщательные исследования показали, что, как и в случае кристаллов с примесями, плавление начинается, по. существу, задолго до Ти Так, более высокая растворимость парамагнитного 2,2,6,6-тетра-метилпиперидин-1-оксида в жидких участках бислоя по сравнению с твердыми позволяет изучать процесс пла вления бислоев путем нагревания мембраны непосредственно в ЭПР-апектрометре по изменению растворимости этого спин-меченого соединения (дополнение 5-Б). Для дипальмитоилфосфатидилхолина (лецитина) величина Тг равна 40,5° С, [c.343]

    Почему мембранные липиды должны обладать подвижностью Одна из причин связана, вероятно, с участием мембран в жизненно важных процессах транспорта. Биологические мембраны характеризуются. довольно высокой проницаемостью для нейтральных молекул (в том. числе НгО), причем при температурах, превышающих Тх, цепи жирных кислот могут свободно поворачиваться вокруг одинарных связей на 120 °С, переходя из транс- в скошенную (гош-) конфигурацию. В результате такого вращения вокруг соседних или близко рааположенных связей возникают изломы цепочек жирных кислот. Если излом образуется вблизи поверхности бислоя (как это чаще всего и происходит) то в образовавшуюся полость легко может проскочить небольшая молекула. Поскольку излом легко перемещается по бислою, небольшие-молекулы могут свободно проникать через мембрану [23]. Не исключено, что эти же факторы обеспечивают перенос и более крупных молекул, играющих роль переносчиков в мембранном транспорте. [c.348]

    Экспериментальные данные, полученные методами ЯМР и ЭПР показывают, что наружные участки бислоев находятся как бы в более твердом состоянии, чем внутренние. По-видимому, не случайно первая, двойная связь в полиненасыщенных жирных кислотах встречается обычно между 9-м и 10-м углеродными атомами. В результате двойные связи в жирных кислотах галактозилдиглицеридов в хлоропластах оказываются на таком же расстоянии от поверхности мембраны, как и. метильные группы цепей фитола в хлорофилле. Считают, что в расплавленном центре бислоя находятся области с нерегулярной структурой, образующиеся за счет метильных групп цепей фитола (рис. 13-19). Последние входят в мембраны хлоропластов [25] и фиксируют там. молекулы хлорофилла.  [c.348]

    Другой важный компонент мембрат эритроцитов — это гликопротеид с мол. весом 100 ООО, который сравнительно прочно закреплен В нутри мембраны и имеет углеводные цепи, выступающие в окружающий раствор [29]. На электронно-микроскопических фотографиях поверхностей мембранного бислоя, полученных методом замораживания— скалывания (рис. 5-1,5), видно, что в мембране на площади [c.353]

    Ионофоры индуцируют транспорт ионов через биологические мембраны и искусственные фосфолипидные бислои. Важнейшие представители гра-мицидины А — С, валиномицин, энниатин, аламетицин и др. [c.303]

    Примечательно чередующееся расположение L- и D-аминокислот. Грамицидин А обусловливает транспорт ионов К+, Na+ и других одновалентных ионов через мембраны митохондрий и эритроцитов, а также через синтетические бислои. Грамицн-дины А—С иногда применяют в медицине, в основном локально, против грамположительных возбудителей болезни. [c.303]

    В 1971 г. Ф. Сенгер и Г. Николсон предложили жидкостно-мозаичную модель биомембран, согласно которой мембраны представляют собой жидкокристаллические структуры, в которых белки могут быть не только на поверхности мембран, но и пронизывать их насквозь. В этом случае основой мембраны является липидный бислой, в котором углеводородные цепи фосфолипидов находятся в жидкокристаллическом состоянии, и с этим бислоем связаны белки двух типов периферические и интегральнь1е. Первые - гидрофильные, связаны с мембранами водородными и ионными связями и могут быть легко отделены от липидов при промывании буфером, солевым раствором или при центрифугировании. Вторые белки - гидрофобные, находятся внутри мембраны и могут быть выделены только после разрушения липидного слоя детергентом (процесс солюбилизации мембран), например, додецилсульфатом натрия, ЭДТА, тритоном и др. Интегральные белки, как правило, амфипатические, т.е. своей гидрофобной частью они взаимодействуют с жирными кислотами, а гидрофильной частью - с клеточным содержимым. Интегральные белки часто являются гликопротеидами, которые синтезируются в аппарате Гольджи, глико-зилируются в мембране и содержат много гидрофобных АК и до 50% спиральных участков. Эти белки перемещаются внутри липидного бислоя со скоростью, сравнимой с перемещением в среде, имеющей вязкость жидкого масла ( море липидов с плавающими айсбергами белков ). [c.107]


Смотреть страницы где упоминается термин Бислои в мембранах: [c.281]    [c.389]    [c.25]    [c.18]    [c.39]    [c.323]    [c.56]    [c.318]    [c.352]    [c.31]    [c.117]   
Биоорганическая химия (1987) -- [ c.5 , c.562 , c.579 , c.585 , c.591 , c.599 , c.608 ]




ПОИСК







© 2025 chem21.info Реклама на сайте