Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны бислой

    В состав клеточных мембран входят в основном белки и липиды, среди- которых преобладают фосфолипиды, составляющие 40—90 % от общего количества липидов в мембране. Строение биомембраны интенсивно изучается в настоящее время. В одной из моделей клеточная мембрана рассматривается как липидный бислой. В таком бислое углеводородные хвосты липидов за счет гидрофобных взаимодействий удерживаются друг возле друга в вытянутом состоянии во внутренней полости, образуя двойной углеводородный слой. Полярные группы липидов располагаются на внешней поверхности бислоя (рис. 14.2). [c.466]


    Фазовые переходы мембранных липидов могут быть вызваны изменением температуры среды. Значение температуры, при котором наблюдается фазовый переход, называется критической температурой фазового перехода, или разделения фаз, если различные участки мембраны вследствие гетерогенности липидного состава по-разному отвечают на изменения температуры. Ионы Са , изменение числа ненасыщенных жирнокислотных цепей мембранных фосфолипидов и некоторые другие факторы также могут индуцировать фазовые переходы в бислое. Обычно критическая температура фазовых переходов приближена к температуре тела гомойотермных животных (или к температуре среды обитания пойкилотермных животных). Таким образом, достаточно незначительного изменения условий, чтобы изменить упаковку мембраны. [c.302]

    Фазовый переход из кристаллического в жидкокристаллическое состояние является эндотермическим процессом количество тепла, необходимое для плавления цепей жирных кнслот, можно определить в калориметре (рис. 3.5). Если липпдный бислой состоит только из одного липида, то фазовый переход пропсходит в узком интервале температур. Так как биологические мембраны обычно состоят из большого количества разных липидов, они не имеют четко выраженного фазового перехода и при физиологических температурах являются жидкокристаллическими. Однако очевидно, что текучесть биологических мембран может быть весьма различной как в разных органах, так даже и в разных частях мембраны одной клетки. На это указывает различный липидный состав разных мембран или их доменов. Хотя еще не установлена общая зависимость между текучестью мембран и их биологической функцией, некоторые факторы, влияющие на текучесть, были выявлены в экспериментах на искусственных липидных мембранах. Накапливаются данные, свидетельствующие о том, что те же факторы действуют и в биомембранах. Температура фазового перехода зависит от природы боковых цепей жирных кислот. [c.71]

    Чем определяется важная роль мембран в клетках Прежде всего мембраны окружают клетки и ограничивают их размеры. При этом они являются естественными агрегатами амфипатических молекул, т. е. молекул, один из концов которых является гидрофобным, а другой — гидрофильным. Способ упаковки таких молекул в бислое обеспечивает создание упорядоченного пограничного слоя между двумя жидкими фазами. Кроме того, мембраны представляют собой естественное местообитание для значительного числа относительно неполярных соединений, образующихся в процессе метаболизма. В мембраны включены многие белки, поверхности которых обладают гидрофобными свойствами. У некоторых белков, например у цитохрома bs (гл. 10, разд. Б. 5), имеются специальные гидрофобные участки, при помощи которых белки прикрепляются к поверхности мембраны. Благодаря полужидкому состоянию внутренней части мембраны в бислой могут входить и из него могут выходить белки и низкомолекулярные комлоненты в ответ на метаболические процессы, протекающие в близлежащих участках цитоплазмы. [c.355]


    Быстрая диффузия белков вдоль мембраны наблюдается только в жидкокристаллич. бислое, в гелевой фазе белки не [c.30]

    Пусть, кроме того, профиль локального натяжения по толщине мембраны соответствует рис. 2. Таким образом, при растяжении в бислое возникает результирующее, так называемое мембранное натяжение у". Для симметричной бислойной мембраны поверхность натяжения локализована, очевидно, посредине между разделяющими поверхностями 2(1). [c.319]

    В качестве последней задачи рассмотрим липидные бислои в везикулах, размер которых настолько велик, что с эффектами кривизны можно не считаться. Ради простоты - ограничимся анализом симметричного случая. Если везикулярный бислой закрыт по отношению к липидному компоненту, то фундаментальное уравнение (16) должно быть в принципе применимо. Однако в случае везикулы поверхность мембраны уже не является независимой переменной, а будет функцией Т и Лд. Если это обстоятельство учтено явно, то мы получаем фундаментальное уравнение в надлежащей для данного случая форме, а именно  [c.338]

    Чтобы рассмотреть взаимосвязь между подвижностью молекул, составляющих бислой, и его функцией, мы должны подробнее обсудить формы такой подвижности. Это колебания и вращение отдельных групп или боковых цепей липидных молекул, а также латеральная диффузия целых липидных молекул в своем монослое. Липидная молекула в липосоме меняется местами с соседними молекулами 10 раз/с. Однако ее переход с одной стороны бислоя на другую сторону совершается только один раз в 14 сут. Этот так называемый флип-флоп , или третий тип подвижности, практически не вносит вклада в подвижность мембраны. [c.74]

    Второй хорошей возможностью было бы проведение измерений зависимости у от при переменных Г и 1з для частично закрытого бислоя, аналогичных пленочно-весовым измерениям на нерастворимых поверхностных пленках. В этом случае и уравнение (13) и (22) приложимы. Следует, однако, отметить, что потребуется интегрирование изотермы для того, чтобы найти все термодинамические свойства бислоя. Открытая по отношению к фазе органического растворителя бислойная мембрана, по-видимому, является менее удачной системой при отыскании необходимой термодинамической информации, в основном, из-за априорного присутствия органического растворителя в бислое. [c.339]

    Белки взаимодействуют с мембранным бислоем, в результате чего они либо ассоциируются с поверхностью мембраны — периферические белки, либо пересекают бислой один или несколько раз, прочно интегрируясь в него,— это интегральные белки. Интеграция оказывается возможной, если в первичной структуре белка имеются достаточно протяженные участки, содержащие гидрофобные аминокислотные последовательности. В таком случае белковые молекулы способны самопроизвольно встраиваться в бислой. При ассоциации рибосом с мембранными структурами встраивание гидрофобных белков в мембрану осуществляется синхронно с их синтезом при участии специальных механизмов, потребляющих энергию АТФ. [c.301]

    Целостная структура мембраны создается за счет гидрофобных и электростатических взаимодействий, а не за счет ковалентных связей между составляющими ее молекулами белков и липидов. Гидрофобный липидный бислой представляет естественную преграду для проникновения полярных молекул. Мембраны асимметричны по своему исходному строению, что [c.302]

    Мембранный бислой обладает относительно малой микровязкостью. Другими словами, мембраны рыхло упакованы, что позволяет отдельным компонентам проявлять высокую подвижность в латеральном направлении. [c.303]

    Транспортная функция является одной из важных функций клеточных мембран (рис. 9.5). Мембрана создает существенные ограничения для проникновения различных веществ, однако она не является полностью непроницаемой небольшие нейтральные молекулы могут проникать через бислой в области структурных дефектов. Этот процесс осуществляется по градиенту концентрации переносимого вещества - из области, где его содержание высоко, в область с более низким содержанием. Такой процесс называется простой диффузией, он осуществляется неизбирательно и с низкой скоростью. [c.303]

    Для изучения возможного связывания и влияния ГНР на конформационное состояние липидов мембран клеток в работе изучали взаимодействие ряда ГНР с липосомами, моделирующие мембраны, не содержащие в липидном бислое белков. [c.561]

    Поэтому для изучения сродства и влияния ряда флавоноидов различной структуры — агликонов и гликозидов — на мембраны клеток тканей артерий и вен крыс бьш использован метод спиновых зондов, в котором липофильный спиновый зонд 5 вводили в раствор, содержащий отрезок изучаемого сосуда. При этом зонд 5 встраивался в липидный бислой мембран клеток ткани сосудов и был недоступен для внеклеточной воды. По спектрам ЭПР определяли параметры вращатель- [c.577]


    Особое влияние на текучесть мембраны оказывает жесткое четырехчленное кольцо холестерола, погруженное в липидный бислой. У эукариотических клеток при температуре 37 °С холестерол ограничивает текучесть мембраны, а при более низких температурах он, наоборот, способствует поддержанию их текучести, препятствуя слипанию углеводородных цепей. [c.307]

    В 1971 г. Ф. Сенгер и Г. Николсон предложили жидкостно-мозаичную модель биомембран, согласно которой мембраны представляют собой жидкокристаллические структуры, в которых белки могут быть не только на поверхности мембран, но и пронизывать их насквозь. В этом случае основой мембраны является липидный бислой, в котором углеводородные цепи фосфолипидов находятся в жидкокристаллическом состоянии, и с этим бислоем связаны белки двух типов периферические и интегральнь1е. Первые - гидрофильные, связаны с мембранами водородными и ионными связями и могут быть легко отделены от липидов при промывании буфером, солевым раствором или при центрифугировании. Вторые белки - гидрофобные, находятся внутри мембраны и могут быть выделены только после разрушения липидного слоя детергентом (процесс солюбилизации мембран), например, додецилсульфатом натрия, ЭДТА, тритоном и др. Интегральные белки, как правило, амфипатические, т.е. своей гидрофобной частью они взаимодействуют с жирными кислотами, а гидрофильной частью - с клеточным содержимым. Интегральные белки часто являются гликопротеидами, которые синтезируются в аппарате Гольджи, глико-зилируются в мембране и содержат много гидрофобных АК и до 50% спиральных участков. Эти белки перемещаются внутри липидного бислоя со скоростью, сравнимой с перемещением в среде, имеющей вязкость жидкого масла ( море липидов с плавающими айсбергами белков ). [c.107]

    Другой возможный вариант механизма переноса — по так называемому эстафетному типу, когда транспортный белок вообще не способен переходить через бислой. В этом случае транспортируемое вещество, возможно, само переходит от одного белка к другому до тех пор, пока не окажется на противоположной стороне мембраны. [c.309]

    Проницаемость мембран зависит от фазового состояния липида в бислое. Так, мембраны, об()азованные легкоплавки липидами, содержащими в углеводорс дных цепях двойные связи, [c.353]

    После гипотезы Даниэлли и Дэвсона предложены разнообразные модели строения биомембран. Развитие представлений о строении биомембран изложено в ряде обзоров (см., например, [227, 228]). Наибольшую популярность в настоящее время получила мозаичная модель биологической мембраны [229], согласно которой функциональные белки погружены и диффундируют в жидкообразном липидном бислое. Белок погружен в бислой таким образом, что полярные и ионизованные группы взаимодействуют с водой, а гидрофобные части — с углеводородными цепями липидов. [c.167]

    Дыхат цепь митохондрий Схематически изображен фрагмент митохондриальной мембраны в разрезе Заштрихован фосфолилндиый бислой Стрелками обозначен путь электронов от субстратов окислевия к Oj Цитохромы А. с и с I белки-переиосчики элек гронов, в качестве простетич группы содержат гем. [c.125]

    Л. б. не разрушают мембраны, не проникают через липидный бислой и осуществляют обмен в мягких условиях, близких к физиологическим. Благодаря этим св-вам они нашли широкое применение при исследовании структуры и ф-ций биол. мембран. Их используют для избирательного введения меченых липидов в наружный и внутренний монослой мембраны, для направленной модификации в ней липидного состава, для изучения трансмембранной миграции липидных молекул и их распределения в мембранах, для выяснения механизмов функционирования мембранных ферментов. [c.598]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Внутримол. динамика мембранных белков изучена меньше, чем липидов. Известно лишь, что боковые заместители на тех участках полипептидной цепи, к-рые погружены в липидный бислой, в значит, мере иммобилизованы. Мн. мембранные белки способны легко диффундировать вдоль мембраны и обладают довольно высокой вращат. подвижностью. Но даже в случае самых подвижных белков измеряемые коэф. диффузии примерно на порядок ниже, чем для липидных молекул. Времена вращат. релаксации для интегральных белков лежат в диапазоне от 20 до 500 мкс, а коэф. латеральной диффузии (вдоль бислоя) варьирует от 7-10 до 10 см -с . [c.30]

    I5 Д, что приводит к значению ]i, = dj./So ж2-10 СГС (so = 0,5- 0,7 нм — площадь, приходящаяся в бислое на одну молекулу липида). Тогда оценка предэкспонен-циального фактора Рц в (9.26) дает значения в интервале 10 ч-10 Н/см , что несколько выше экспериментального интервала значений Рц. Такое завышение Ро, по-видимому, связано с использованием линейного по электрическому полю приближения. Фактически в непосредственной окрестности мембраны должны заметно проявляться нелинейные эффекты, уменьшающие величину электрического поля и, соответственно, значение Ра. Но и с учетом этих эффектов зависимость Р К) при сохранит экспоненциальный вид. [c.166]

    Как будет показано ниже, продольная деформация мембраны может быть выбрана в качестве независимой переменной состояния для частично закрытой бислойной мембранной системы, что приводит к фундаментальному уравнению типа уравнения Шаттлворта, подобно тому, как это сделано в случае нерастворимых поверхностных пленок. С другой стороны, введение деформационно-зависимого химического потенциала для мембранообразующего липида в бислое позволяет почти полностью следовать гиббсовскому методу, приводящему к фундаментальным уравнениям гиббсовского типа. Полностью открытая бислойная мембрана может быть рассмотрена непосредственно в рамках гиббсовского метода. Ниже мы покажем, что открытые би-слойномембранные системы представляют также определенные преимущества для извлечения желаемой термодинамической информации о составе мембраны, энергии, энтропии и т. д. [c.318]

    Как отмечалось во Введении, формальное термодинамическое рассмотрение зависит от того, является ли исследуемая бислойная мембрана в действительности закрытой или открытой системой. Это можно показать на примере способа образования бислойной мембраны, предложенному Тагаки, Азума и Киши-мото [14] (рис. 3). Если липидный бислой образуется из соответствующей монослойной пленки, очевидно, что он является полностью открытой системой. Для такой мембранной системы [c.321]

    Очевидно, что подобная простейшая модель приемлема только в узкой области состояний мембраны, близких к неде-формированному, т. е. когда у составляет, по крайней мере, несколько дин/см. Соответствующий монослой с той же плотностью головных групп липида, что и бислой, отличается в первую очередь по углеводородной подвижности. Для относительно п отноупакованного монослоя (45—70 на 1 молекулу), поддерживаемого при равновесном или близком к нему давлении растекания, основной вклад в результирующее поверхностное натяжение, вероятно, должен определяться пониженной плотностью в области концов углеводородных цепей, точно так же, как для поверхностной зоны углеводородной жидкости. Для бислойной мембраны и для монослойной пленки в состоянии, близком к равновесному давлению растекания, термодинамические условия в зонах головных групп должны быть сходными и в значительной степени определяться всей совокупностью взаимодействий с водой, как предположено Форслиндом и Кьелландером [18]. На этой приемлемо приближенной основе мы можем сделать следующее допущение [уравнение (25) ] [c.330]

    Одиночный липидный бислой может быть обратимо образован из (ламеллярного) стандартного состояния следующим образом. Кристалл мембранообразующего липида помещают на поверхность водного раствора, где он набухает и растекается до липидного монослоя при равновесном давлении растекания, С помощью методики Тагаки и др. [14], проведенной в обратимых условиях, бислойная мембрана образуется за счет приложения работы при постоянном уК В ходе этих операций М 2 = М = М Г т. е. химический потенциал липидного компонента всегда тот же, что и в стандартном состоянии. [c.333]

    Исследователи из Калифорнийского университета наблюдали фотоиндуцированный перенос элекфонов от проводящего полимера к бакиболу Сбо - этот кластер способен быть акцептором шести элекфонов. А исследователи из Рокфеллеровского университета экспериментально показали ", что встроенные в биомембраны бакиболы С70 могут транспортировать электроны через липидный бислой. При освещении связанных с мембраной донорных молекул элекфоны переходят на углеродные кластеры. Пока не выяснено, идет ли затем диффузия бакиболов внутри мембраны или электроны последовательно перескакивают с одного кластера на другой. Эти свойства бакиболов (а возможно и углеродных нанометрических трубок) можно использовать в оптико-молекулярной электронике -светочувствительных диодах, солнечных батареях и т.п. [c.155]

    Почему мембранные липиды должны обладать подвижностью Одна из причин связана, вероятно, с участием мембран в жизненно важных процессах транспорта. Биологические мембраны характеризуются. довольно высокой проницаемостью для нейтральных молекул (в том. числе НгО), причем при температурах, превышающих Тх, цепи жирных кислот могут свободно поворачиваться вокруг одинарных связей на 120 °С, переходя из транс- в скошенную (гош-) конфигурацию. В результате такого вращения вокруг соседних или близко рааположенных связей возникают изломы цепочек жирных кислот. Если излом образуется вблизи поверхности бислоя (как это чаще всего и происходит) то в образовавшуюся полость легко может проскочить небольшая молекула. Поскольку излом легко перемещается по бислою, небольшие-молекулы могут свободно проникать через мембрану [23]. Не исключено, что эти же факторы обеспечивают перенос и более крупных молекул, играющих роль переносчиков в мембранном транспорте. [c.348]

    Отщепление сигнальной последовательности у люминальной стороны мембраны, обращенной в межмембранный просвет эндоплазматического ретикулума, по-видимому, приводит к тому, что гидрофобность растущего пептида уменьшается, и его пребывание в липидном бислое становится менее выгодным, чем переход в водную фазу межмембранного просвета. Соответственно, в зависимости от аминокислотного состава и последовательности, в водную фазу будут вытолкнуты либо лишь его водорастворимая часть (скажем, N-концевая часть), как в случае многих трансмембранных белков, либо весь белок по завершении его синтеза, как в случае секретируемых белков. Естественно, переход в водную фазу должен сопровождаться перестройкой пространственной структуры, приобретающей глобулярную конформацию (гидрофобные остатки обращаются внутрь глобулы или глобулярного домена, в то время как гидрофильные экспонируются наружу). [c.285]

    Как видно из приведенных в табл. 25.3.1 данных, в миелине отношение липид белок выше, чем в других мембранах это соответствует специфической функциональной роли миелина. Напротив, для протекания высокоэффективных процессов окисления во внутренней мембране митохондрий необходимо присутствие нескольких ферментов и отношение липид белок у нее ниже. В мембране эритроцитов содержится относительно большое количество углеводов. Основной гликопротеин мембраны эритроцитов, гликофорин, как было показано [6], ориентирован на поверхности мембраны так, что Л -концевая часть его полипептидной цепи, несущая все ковалентно связанные остатки углеводов, выступает во внешнюю среду такими поверхностными олигосахаридами являются некоторые групповые антигены крови и рецепторы, включая рецептор вируса гриппа. Схематическое изображение возможного расположения белков, липидов и углеводов в биологической мембране, приведенное на рис. 25.3.1, основано на жидкомозаичной модели [7]. Полярные молекулы липидов образуют бимолекулярный слой (см. разд. 25.3.3), тогда как белки могут быть или связаны с поверхностью (так называемые внешние белки), или внедрены в бислой (так называемые внутренние или интегральные белки). В некоторых случаях белок может пронизывать бислой. Жидкомозаичная модель завоевала всеобщее признание предполагают, что мембрана в физиологических условиях является текучей, а не статичной. Так, липидные и белковые компоненты в изолированных [c.109]

    Предполагают, что механизмы такого действия стероидов включают проникновение гормона вследствие легкой растворимости в жирах через липидный бислой клеточной мембраны, образование стероидрецеиторного комплекса в цитоплазме клетки, последующее преобразование этого комплекса в цитоплазме, быстрый транспорт в ядро и связывание его с хроматином. Считают, что в этом процессе участвуют как кислые белки хроматина, так II непосредственно ДНК. В настоящее время разработана концепция [c.276]

    Биологические мембраны представляют собой динамическую структуру, компоненты которой подвержены быстрому метаболизму. Благодаря этому липвдное окружение мембранных белков обладает способностью в соответствии с изменением условий функционирования изменять свои физикохимические свойства упаковку, микровязкость, латеральную подвижность компонентов в бислое и т.д. Подавляющее больщинство мембранных белков функционирует в составе олигомерных ансамблей, например в дыхательной цепи митохондрий. Транспортные белки также организуют ассоциаты в бислое димеры (Са -АТФаза), тетрамеры (Ка /К -АТФаза) или даже более высокоорганизованные надмолекулярные комплексы. [c.316]

    Мы не будем приводить здесь аргументы за и против бислойной модели. Эта интереснейшая глава истории науки описана в многочисленных монографиях, специально посвященных мембранам. Основная концепция бислойной структурной организации клеточных мембран стала вскоре общепринятой, и некоторые разногласия касались только расположения в мембране белков. Согласно модели Даниелли и Давсона, белки размещались на поверхности бислоя, где они должны были удерживаться электростатическими силами. Поскольку при этом липидный бислой оказывался заключенным между двумя слоями белка, как масло между двумя ломтиками хлеба, такая модель стала называться моделью сандвича , или, говоря научным языком, унитарной мембранной моделью . Для того чтобы белки покрывали поверхность мембраны как можно более [c.68]

    Действие ионов кальция особенно интересно для нейробиологии. Они увеличивают электрическое сопротивление нскусст-г. нных липидных мембран, т. е. стабилизируют их, если присутствуют в одинаковых концентрациях по обе стороны мембраны. Напротив, присутствие ионов кальция только с одной стороны мембраны понижает сопротивление и дестабилизирует мембрану, а при [Са +]>1 мМ мембрана разрушается. Нечто подобное злектрофизиологи наблюдали и в нервной мембране. Они показали, что порог генерации потенциала действия и, следовательно, временного увеличения ионной проницаемости аксональной мембраны понижается при уменьшении концентрации кальция во внешней среде (гл. 6). Ионы кальция влияют на паковку и подвижность липидных молекул в бислое. Они повышают температуру фазового перехода, тем самым стабилизируя кристаллическое состояние. Однако перенесение результатов, полученных на искусственных мембранах, на истинные биологические мембраны означает приложение данных, полученных на простых биофизических системах, к гораздо более сложным биологическим системам. Например, описанные катионные эффекты сильно зависят от анионов, белков и липидной гетерогенности биомембраны. [c.75]

    Хотя бислойная модель предполагает симметричную структуру, при которой поверхность раздела монослоев является плоскостью симметрии, теперь мы знаем, что эта концепция ошибочна. Белки, углеводы и липиды в бислое распределены асимметрично. Эти данные, как и многие другие основополагающие концепции мембранологии, были получены при изучении мембран эритроцитов [12]. Есть многочисленные свидетельства того, что и нервная мембрана устроена аналогичным образом. [c.75]

    Жидкомозаичная модель Синджера и Николсона [3] различает два типа мембранных белков периферические и интегральные. Периферические белки удерживаются на поверхности мембраны в основном ионньпми взаимодействиями и относительно легко солюбилизируются, например, путем увеличения ионной силы. Интегральные белки погружены в липидную фазу и не могут быть высвобождены из мембраны без хотя бы частичного ее разрушения. Они нерастворимы в воде, гидрофобны и липофильны. Эта характеристика двух классов мембранных белков предполагает, что они асимметрично распределены в клеточной мембране периферические белки находятся только по одну сторону бислоя, тогда как интегральные проникают в нее — чаще только в один монослой если же они пронизывают весь бислой, то тогда они функционально асимметричны. Пример асимметрии последнего типа — транспортные системы, такие, как Na+, К+-АТРаза (гл. 7). [c.77]

    Белки можно включать в бислой либо прибавлением их к липидному раствору перед формированием мембраны, либо введением в уже сформировавшийся бислой посредством диффузии. Применение черных липидных мембран (bla k lipid membranes, BLM) оказалось особенно успешным для изучения низкомолекулярных пептидных ионофоров, таких, как антибиотики грамицидин и валиномицин. Кинетику их ионного транспорта удалось проанализировать детально было показано, что валиномицин — ионофор, а грамицидин, напротив, димеризуется, образуя в мембране поры. Этот метод настолько чувствителен, что позволил количественно изучать свойства единичных ионных каналов, их ионную селективность, максимальную проводимость и время жизни. [c.88]

    Доминирование в мембране архебактерий липидов, образованных на основе ди- и тетраэфиров, поставило вопрос о принципиальной ее организации. По современным представлениям, у всех эубактерий и эукариот основу элементарной (липопротеиновой) мембраны составляет липидный бислой (см. рис. 15). Диэфиры архебактерий способны образовывать элементарные мембраны, состоящие из двух ориентированных слоев липидных молекул. Молекулы тетраэфира имеют длину порядка 5—7,5 нм. Толщина мембраны архебактерий примерно 7 нм. Такая мембрана не может быть организована из двух слоев тетраэфирных молекул. Очеввдно, что в данном случае она представляет собой липидный монослой (рис. 103). Монослойные липидные мембраны обладают, очевидно, повышенной жесткостью по сравнению с бислойными. Обнаружение липопротеиновой мембраны, в основе которой лежит [c.411]


Смотреть страницы где упоминается термин Мембраны бислой: [c.166]    [c.30]    [c.31]    [c.353]    [c.123]    [c.11]    [c.69]    [c.77]    [c.92]    [c.303]   
Нейрохимия (1996) -- [ c.103 , c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Бислойная мембрана Мембрана плоский бислой

Мембраны липидный бислой

Черная мембрана Мембрана плоский бислой



© 2025 chem21.info Реклама на сайте