Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зажигание эффективность

    Опыт эксплуатации показал, что применение тиристоров в качестве коммутирующих элементов устройств снижения напряжения холостого хода сварочных трансформаторов весьма эффективно. Это обусловлено практически мгновенным включением их в момент прикосновения электродом к свариваемой детали, что существенно облегчает зажигание дуги и повышает производительность труда сварщика, а также практически неограниченным числом включений, которое они выдерживают. [c.221]


Рис. 31. Эффективность фосфорных соединений при подавлении калильного зажигания Рис. 31. <a href="/info/125988">Эффективность фосфорных</a> соединений при подавлении калильного зажигания
    Существование гистерезиса объясняется теплопередачей между нагретыми частицами катализатора в реакторе и менее горячим реакционным потоком. Когда в реакторе происходит теплообмен за счет радиации в начальной части слоя катализатора (горячий слой катализатора и холодный, еще не вступивший в химическую реакцию, газ), в реакторе [3, 4] возможно существование трех устойчивых стационарных состояний, разделенных двумя неустойчивыми. При этом влияние инертных наполнителей, уменьшающих температурный градиент между слоем и газом, расио-ложенных перед слоем катализатора и после него, рассмотрено в [4, 5]. Условия, при которых возможно зажигание, получены, например, в [6]. Анализ этих условий показывает, что для гетерогенных каталитических реакторов зажигание происходит тем эффективнее, чем длиннее слой. Следует поэтому предположить, что имеется предельное значение длины слоя катализатора, при превышении которой устойчивы лишь зажженные стационарные [c.284]

    Для обеспечения бесперебойной и эффективной работы двигателя свеча зажигания не должна нагреваться выше или ниже определенных пределов. Черный влажный нагар или масло на юбке изолятора — верный показатель того, что свеча не нагревается до температуры самоочищения. Это, в свою очередь, указывает на износ цилиндро-поршне-вой группы (ЦПГ) (поршневых колец). Белый или чистый конус изолятора свечи является признаком слишком горячей свечи для данного типа двигателя или слишком раннего зажигания. [c.162]

    Эффективность действия противопожарных средств уменьшается от класса к классу. Пожары жидкостей классов 1 - 3 могут сдерживаться при помощи пены, но пожары жидкостей классов 4 - 5 ставят проблемы куда более серьезные, если вообще преодолимые. В табл. 8.4 приводится таксономия поведения жидкостей всех шести классов, а также выбросов газов или паров в отношении источников зажигания. В дополнение рис. 8.3 обобщает таблицу в графическом виде. Хотя и очень грубо, но все-таки по таблице можно обнаружить, что части, соответствующие жидкостям различных классов, отличаются на порядок величины. В случае жидкостей классов 1 - 5 предполагается, что выше уровня жидкости существует двухметровый слой пара и что толщина жидкости составляет 0,2 м. В таблицу включены также сжатые газы, но на рисунке они не отражены. [c.142]


    Без теплообменных элементов эффективно работают прежде всего аппараты, в которых протекают реакции с небольшим тепловым эффектом или же перерабатываются разбавленные газы. В последнем случае даже при большом тепловом эффекте реакции температура меняется незначительно соответственно уравнению адиабаты (П1.42) и (111.43). Подогрев газа до температуры зажигания катализатора (нри экзотермических процессах), или более высокой при эндотермических, происходит в выносных теплообменниках, подогревателях, печах. Без теплообменных элементов могут работать и однослойные аппараты с большим тепловым эффектом процесса. В этом случае при эндотермических процессах необходимая температура достигается за счет предварительного нагревания газа и, в некоторых случаях, катализатора в экзотермических процессах газ поступает при температурах ниже температуры зажигания катализатора и его начальная температура определяется из теплового баланса или уравнения адиабаты по заданной оптимальной температуре в слое. [c.110]

    Двигатели, работающие на газе высокого давления, с факельным зажиганием, действуют по принципу газодизеля, когда заряд вспомогательного топлива (обычно дистиллятного, около 5% общего количества топлива) впрыскивается через топливный клапан непосредственно перед ВМТ и инициирует процесс сгорания. Затем в цилиндр под высоким давлением (например, 250 бар) подается остальной заряд (обычно природный газ). Газ воспламеняется по мере поступления в цилиндр, что обеспечивает полноту сгорания без детонации и преждевременного воспламенения. В этих двигателях около 5-7% эффективной мощности затрачивается на сжатие газового заряда. При прекращении подачи газа они могут переводиться на работу на дистиллятном топливе. [c.129]

    Отмечены две характерные особенности этого нагара. Во-первых, он вызывает преждевременное воспламенение рабочей смеси от тлеющих частиц. Частота возникновения калильного зажигания практически прямо пропорциональна концентрации ЦТМ в бензине. Соединения фосфора (трикрезилфосфат) эффективно снижают частоту калильного зажигания. Оптимальная концентрация трикрезилфосфата составляет 0,2 от теоретически необходимой для перевода содержащегося в бензине марганца в ортофосфат (около 0,16 мл трикрезилфосфата на 1 кг бензина при содержании ЦТМ [c.36]

    Эффективность использования катализаторов в промышленных гетерогенно-каталитических процессах существенно зависит от их технологических характеристик. К ним относятся активность, температура зажигания, селективность действия, устойчивость к ядам, пористость, механическая прочность, теплопроводность, доступность и дешевизна. [c.129]

    Электрические запальные устройства очень часто работают без пилотного пламени, поэтому надежность их функционирования зависит от эффективности системы контроля наличия пламени. Если пламя не стабилизировалось в течение заданного времени, подача газа должна быть прекращена, а процесс зажигания повторен вновь. В полностью автоматизированных системах вторичный розжиг может быть осуществлен только после полной продувки рабочего пространства печи. [c.124]

    В связи с этим для выработки правильных и эффективных профилактических мер при исследовании пожара прежде всего выясняют источник зажигания, послуживший непосредственной причиной возникновения огня. Установить такой источник бывает довольно трудно, так как момент возникновения пожара обычно скрыт от взора людей развившийся пожар нарушает или полностью уничтожает первичную обстановку, а возможные источники зажигания, из которых необходимо выбрать истинный, многочисленны. [c.8]

    Традиционное понятие причины возникновения пожара как непосредственной причины возникновения огня в общем случае все-таки является узким, односторонним и, следовательно, неверным. Согласно известным физико-химическим основам горения, для возникновения пожара кроме источника зажигания необходимы еще горючее вещество и окислитель в определенном соотношении, при котором они образуют горючую смесь. Можно привести немало примеров, когда имеется непрерывный и мощный источник зажигания, но пожара нет, так как нет горючей смеси. Без учета условий образования горючей смеси эффективная пожарная профилактика невозможна. [c.8]

    В данных условиях количество отложений на поршне уменьшается при 9 = 5—10°, а наименьший износ верхнего поршневого кольца — при 0 = 21°. В случае позднего зажигания процесс сгорания ухудшается, количество отложений на поршне и износ кольца увеличиваются в результате нарушения режима смазки и значительного смывания бензином масляной пленки. При увеличении угла опережения зажигания, т. е. при раннем зажигании, сгорание рабочей смеси улучшается, температура в камере сгорания, а следовательно, температура поршня повышается, среднее эффективное давление также увеличивается, вызывая увеличение износа верхнего кольца и количества отложений на поршне. [c.276]


    Детонация вызывает неустойчивую работу двигателя, перегревы головки и стенок цилиндра, падение эффективной мощности, увеличение удельного расхода топлива продолжительная работа двигателя с детонацией приводит к термическим и механическим повреждениям поршней, выхлопных клапанов и свечей зажигания, что може привести к серьезным авариям двигателя. [c.204]

    Относительно простое решение задачи значительного расширения пределов эффективного использования бедных смесей в бензиновых двигателях на частичных нагрузках при одновременном сохранении высоких мощностных и экономических показателей на полных нагрузках дает фор камерно-факельное зажигание, разработанное А. С. Соколиком, А. Н. Воиновым и Л. А. Гуссак [18]. [c.59]

    В СССР фосфорные присадки пока не нашли применения, хотя изучение их эффективности и особенностей применения проводится. Следует ожидать, что увеличение степени сжатия в перспективных отечественных автомобильных двигателях и использование в качестве бензинов высокоароматизированных продуктов каталитическога риформинга приведет уже в ближайшее время к необходимости введения эффективных мер борьбы с калильным зажиганием.. [c.87]

    При работе двигателя на бензинах с ЦТМ отмечены две характерные особенности образующихся нагаров. Первая особенность состоит в том, что такой нагар вызывает преждевременное воспламенение рабочей шеси от тлеющих частиц. Частота возникновения калильного зажигания практически прямо пропорциональна концентрации ЦТМ в бензине (рис. 59). Добавленй соединений фосфора (трикрезилфосфат) эффективно снижает частоту калильного зажигания (рис. 60). При этом оптимальная концентрация трикре- [c.161]

    Надежность работы свечей зажигания зависит от состава нагара, отлагающегося на электродах, изоляторах и т. д. Электросопротивление такого соединения, как РЬВг,, резко уменьшается даже при относительно невысоких температурах (рис. 66). Снижение электросопротивления нагара приводит к перебоям в работе свечи вследствие замыкания электродов. Эффективным средством борьбы с этим явлением служит добавление фосфорных присадок. Соединение фосфора со свинцом — РЬз (РО г — остается неэлектропроводным до весьма высоких температур (рис. 66). Применение фосфорной присадки (трикрезилфосфат) при работе двигателя на этилированном бензине позволяет продлить срок работы свечей без замыкания электродов более чем в 2 раза (рис. 67). [c.168]

    Одной из распространенных противонагарных присадок для этилированных бензинов является трикрезилфосфат. Его добавка предотвращает нагарообразование на свечах зажигания и увеличивает почти вдвое срок работы свечей без замыкания электродов. Эффективность трикрезилфосфата объясняется тем, что в его присутствии при сгорании этилированного бензина образуется соединение ЗРЬз(Р04)2-РЬВг2 (т. пл. 955 °С), частично уносимое с отработанными газами. Действие трикрезилфосфата усиливается в присутствии аминов или Ы-метилпирролидона. Для двигателей с высокой степенью сжатия топлив и при использовании топлив с большим содержанием ТЭС весьма эффективны смеси трикре-аилфосфата с полярными органическими соединениями (эфирами, кетонами, эфирами оксикислот и лактонами). Для сернистого топлива предложена присадка на основе трикрезилфосфата и нитробензола с добавками изопропилового спирта и нитрата хрома. [c.265]

    В контактных аппаратах с неподвижным катализатором Нельзя применять водяные холодильники, так как вследствие весьма низкой теплопроводности пористых гранул ванадиевого катализатора [порядка 0,57 ккал м-град -ч) у теплообменных поверхностей происходит резкое-падение температуры ниже температуры зажигания катализатора. Кроме того, на холодных поверхностях теплообменных труб может конденсироваться серная кислота, что вызывает быструю их коррозию и порчу контактной массы, находящейся в зоне теплообменников. Эффективная теплопроводность кипящего с лоя достигает 15 ООО ккал/(д1 грй 9.ч) [181, а коэффициенты теплоотдачи столь велики [16, 19], что становится возможным применение водяных холодильников (см. главу IV). При этом не происходит конденсации серной кислоты на холодных поверхностях, омываемых кипящим слоем при снижении температуры до 390° С, т. е. ниже рабочих температур катализа [20]. Теплопередача от кипящего слоя к воде, протекающей в трубах водяного холодильника, происходит много интенсивнее, чем в газовых теплообменниках, которые устанавливают между слоями аппаратов с неподвижным катализатором коэффициент теплопередачи возрастает в среднем в 15 раз. Движущая сила процесса теплопередачи Ai (разность температур) также увеличивается примерно в 2 райа. Таким образом, площадь теплообмена Р, вычисляемая по формуле [c.144]

    Это регулирование было, однако, более эффективно определено Актом о чистоте воздуха (1956 г.) [294], который предоставил местному управлению гораздо более широкие полномочия. Этим законодательством ограничивался выбр01с дыма по его густоте густой дым определялся как дым, дающий такое же затемнение или больше, чем решетка 2 по шкале Ригельманна (рис. 1-4), за исключением момента зажигания печи или случая непредвиденной аварийной ситуации. [c.45]

    В промышленных масштабах используется только метод восстановления отходящих газов производства азотной кислоты с применением платинового или палладиевого катализатора вместе с топливным мазутом эффективность метода превышает 907о. В ряде случаев считается достаточным восстановление до оксида азота (II), когда выхлопные газы становятся бесцветными. На это расходуется стехиометрическое количество горючего газа, например природный или доменный газ, СО, Hs и пары керосина. Для полного восстановления необходимо дополнительное количество горючего газа, который должен реагировать как с кислородом, так и с диоксидом азота. Температура процесса должна быть ниже 850 °С, и в случае присутствия больших количеств кислорода следует использовать двухстадийный процесс для того, чтобы температура во время реакции не превысила 850°С. Температура зажигания изменяется от 150 (если в качестве топлива используют водород или оксид углерода) до 400°С (если используют метан). [c.196]

    В связи с отказом от применения свинцовых антидетонаторов стали исследовать и испытывать различные нетоксичные соединения для улучшения детонационной стойкости бензинов. В качестве высокооктановых компонентов предложено использовать некоторые кислородсодержащие соединения (спирты, эфиры и т. д.). В качестве ант1идето1национных присадок продолжают исследовать соединения марганца. Такое соединение, как циклопентадиеннл-трикарбонил марганца (ЦТМ) по эффективности не уступает ТЭС, но в 300 раз менее токсично. Однако после сгорания ЦТМ образуются отложения, препятствующие (нормальной работе свечей зажигания. Пока данный недостаток устранить не удалось, но исследования в этой области нродолл<аются во многих странах. [c.289]

    Двигатель с форкамерно-факельным зажиганием снижает выбросы всех вредных веществ по сравнению с двигателем с искровым зажиганием. Особено эффективной оказалась установка нейтрализатора. Двигатель с форкамерно-факельным зажиганием и с нейтрализатором снижает выбросы оксида углерода в 10 раз, углеводородов — в 6,5 раз, оксида азота — в 3 раза, а содержание бензпирена в ОГ уменьшается в 32 раза по сравнению с двигателем с искровым зажиганием, т. е. массовым двигателем, устанавливаемым на городских такси. [c.340]

    Марганцевые антидетонаторы ЦТМ (циклопентадиенилтрикарбонил марганца) и МЦТМ (метилЦТМ) в концентрациях одинаковых с ТЭС не ухудшают экологические свойства бензина и в некоторых случаях - эффективнее, чем ТЭС. Однако при использовании марганцевых антидетонаторов наблюдаются перебои в работе свечей зажигания, поэтому концентрация марганца в бензинах ограничивается величинами не более 18 (Регуляр-91) и 50 мг/дм (Нормаль-80). [c.127]

    Регулировочные характеристики по составу смеси ( или по расходу or ливa ) представляют собой графическое изображение зависимости эффективной мощности Ме и эффективного удельного расхода топлива ёе от коэффициента избытка воздуха а ( от расхода топлива ) при постоянных числах оборотов вала двигателя, положении дроссельной заслонки, температурах нагрева масла и охлаждающей жидкости и наивыгоднейшем угле опережения зажигания или угле подачи топлива в цилиндры О. [c.65]

    В 1987 г. проведены натурные испытания варианта модульной установки с пневматическим пуском и спринклерной побудительной системой. Определялась эффективность такой установки при тушении пожаров в помещениях с электротехническим оборудованием. Помещение имело форму, близкую к цилиндру. Площадь основания цилиндра 100 м высота 6,3 м. Внутри помещения на уровне 3 м располагался технологический этаж с проемом в центре для установки оборудования. В качестве модулей были использованы авиационные огнетушители типа 0С-8М с зарядом 70 % (масс.) хладона П4В2 и 30% (масс.) диоксида углерода. Масса состава рассчитывалась, исходя из огнетушащей концентрации для трансформаторного масла, равной 5,6 % (об.) и обеспечиваемой с помощью огнетушителей, размещенных по периметру на двух уровнях 16 шт. в верхней зоне и 8 шт. в нижней. Для оценки равномерности распределения состава в различных местах помещения были установлены 10 плошек с дизельным топливом диаметром 100 мм, высотой 50 мм. В центре на высоте 1 м находился противень площадью 0,25 м с трансформаторным маслом. Установка сработала через 3,5 мин после зажигания масла. Все очаги были потушены в пределах времени выброса состава — 10 с. [c.324]

    Горение должно быть не только интенсивным, но и устойчивым без пульсации и срыва факела. Известно, что столкновение молекул кислорода и топлива приводит к реакции горения лишь в том случае, если частицы достаточно нагрелись, приобретя энергию активации. При розжиге эта энергия получается за счет внесения тепла извне огневым факелом, раскаленным телом, или электрическим запалом. В дальнейшем горение топлива должно обеспечивать температуру, необходимую для зажигания вновь поступающих масс топлива. Существенную роль в поддержании горения могут сыграть лучеиспускающие накаленные стенки топочной камеры, фурмы, поджигательные сводики, козырьки и различные вставки. В случае их отсутствия или недостаточной эффективности в самом факеле должны быть созданы условия стабилизации фронта воспламенения [4]. [c.47]

    Под минимальной энергией зажигания взвеси пыли в воздухе понимают наименьшую энергию конденсатора, при разряде которого через воздушный промежуток возникает искра, зажигающая с вероятностью 0,01 наиболее легко воспламеняемую смесь данного вещества с воздухом. Минимальная энергия зажигания позволяет сравнивать чувствительность различных пылей к воспламенению от внешних источников зажигания, а также непосредственно рассчитывать допустимую энергию электрических разрядов во взрывоопасной среде и разрабатывать эффективные противопожарные меры. [c.27]

    При разработке моторного метода оценки эксплуатационных свойств масел при высоких температурах необходимо создать термически напряженный режим работы двигателя, который бы позволил сравнительно быстро определить антиокислительные, термические, моющие (детергентные и диспергирующие), противо-износные и противокоррозионные свойства. Выбор режима испы таиия обусловлен влиянием некоторых факторов на результаты испытаний к этим факторам прежде всего относятся следующие часовой расход масла температура цилиндра и масла в картере двигателя продолжительность испытания угол опережения зажигания состав смеси эффективная мощность двигателя скорость вращения коленчатого вала двигателя микропрофиль поверхности поршня количество масла, находящегося в картере зазоры в сопряжениях. [c.272]

    Для эффективного осуществления столь важных функций, выполняемых моторным маслом, современные двигатели имеют разветвленную Оистему циркуляционной омазки трущихся деталей (рис. 4). Под давлением масло поступает почти во все подшипники скольжения двигателя. В некоторых двигателях под давлением смазываются направляющие толкателей, поршневые пальцы в подшипнике верхней головки шатуна, подшипники вала привода распределителя зажигания, вала привода водяного насоса и плунжерные пары насоса высокого давления. К остальным трущимся поверхностям (цилиндры, поршни, шестерни распределения п др.) масло поступает разбрызгиванием. [c.14]

    Учитывая высокую степень гомогенности водородовоздуш ного заряда, низкую энергию воспламенения и высокую фундаментальную скорость сгорания водорода в воздухе, следует ожидать высокую стабильность рабочего процесса в широком диапазоне коэффициентов избытка воздуха. Оценка неравномерности рабочего процесса четырехтактного водородного двигателя с искровым зажиганием показала, что даже при обеднении водородовоздушной смесн значительно выше предела эффективного обеднения не отмечается заметного увеличения степени неравномерности. [c.61]

    Интересно рассмотреть возможности применения РДТТ в ракетах-носителях и космических аппаратах, к которым предъявляются требования высокой надежности и эффективности. Особенности таких летательных аппаратов в отличие от боёвтйх ракет, как правило, достаточно хорошо освещены в открытий литературе, и на их примере можно проиллюстрировать критерии, которыми руководствуются при применении различных типов ТРТ, материала корпуса двигателя, систем зажигания, устройств регулирования модуля и вектора тяги. [c.224]

    Детонация — взрывное воспламенение бензино-воз-душной смеси, происходящее раньше, чем до нее дойдет фронт пламени от свечи зажигания. Детонация приводит к быстрому износу и поломкам деталей двш ате-яя, к неполному сгоранию топлива, иовыпхенной дьж-ности, высокому расходу масла на угар, снижению КПД двигателя. Для предотвращения детонационного горения топлива в бензин добавляют антидетонационные присадки. Показателем эффективности антидетонаци-ониых присадок является прирост октанового числа. [c.930]


Смотреть страницы где упоминается термин Зажигание эффективность: [c.90]    [c.143]    [c.283]    [c.37]    [c.298]    [c.33]    [c.364]    [c.598]    [c.367]    [c.116]    [c.294]    [c.52]    [c.294]    [c.567]   
Горение (1979) -- [ c.40 , c.42 ]




ПОИСК







© 2025 chem21.info Реклама на сайте