Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы количественного изотопного разбавления

    Необходимость в количественной обработке раствора пробы можно исключить, если для определения меченого производного применять метод обратного изотопного разбавления. Для этого после превращения анализируемого амина в замещенный сульфамид в раствор добавляют известное количество нерадиоактивного производного, много большее количества меченого производного, присутствующего в растворе. Для этого берут минимальное количество нерадиоактивного производного, достаточное для последующего проведения операций очистки. Затем, применяя ионообменные смолы [79] или экстракцию [81], из раствора удаляют избыток реагента, не обращая внимания на небольшие потери анализируемого соединения. После этого образовавшееся производное очищают путем перекристаллизации до получения постоянного значения удельной радиоактивности [81]. Однако более строгим критерием чистоты соединения в данном растворителе является совпадение значений удельной радиоактивности фильтрата и полученного продукта [83]. Хроматографического разделения в таком анализе не требуется, и удельные радиоактивности образовавшегося производного и радиореагента измеряют, используя стандартный метод. Содержание амииа в пробе в этом случае вычисляют по формуле [c.309]


    Для определения очень малых количеств Мд, Си, Zn и Сс1 в арсениде галлия предложен радиоактивационный метод, основанный на принципе количественного изотопного разбавления 18451. [c.197]

    Содержание этих соединений в массе полимера очень мало "( 10 г), и количественное выделение их в чистом виде весьма трудно. Почти единственно возможным методом их определения является метод изотопного разбавления. С этой целью в начале полимеризации добавляется небольшое количество меченного углеродом-14 инициатора с высокой удельной активностью. По окончании процесса полимер и побочные продукты оказываются радиоактивными. Содержание последних легко определить методом обратного изотопного разбавления, добавляя в систему определенные весовые количества стабильных предполагаемых побочных продуктов (продуктов диспропорционирования и присоединения). [c.274]

    Если исходное вещество не является меченым, то ему можно сообщить это свойство, заставив его количественно прореагировать с каким-либо меченым реагентом в дальнейшем манипулируют с образовавшимся производным продуктом по вышеописанной методике [139, 140]. Результаты анализа пересчитываются на весовое содержание первоначального соединения. Этот вариант, как и весь метод обратного изотопного разбавления в целом, имеет то преимущество, что позволяет избежать синтеза большого числа меченых соединений, поскольку один и тот же реагент может применяться для целого ряда определений. [c.97]

    Изотопное разбавление применяют в тех случаях, когда трудно вьще-лить все анализируемое вещество из сложной смеси. В этом методе небольшое количество компонента, на который проводится анализ, добавляют к анализируемой смеси. Причем добавляемое соединение содержит 100% (или по крайней мере известный процент) радиоактивного изотопа какого-либо элемента. Чтобы охарактеризовать радиоактивность образца, используется понятие удельной активности, которая измеряется числом радиоактивных распадов в единицу времени на грамм вещества. Добавляемое вещество тщательно перемешивают с анализируемой смесью. Затем из нее изолируют компонент, на который производится анализ, для чего используют какой-нибудь метод, дающий не количественное разделение, а хотя бы небольшое количество чрезвычайно чистого соединения. Уменьшение удельной активности добавленного соединения в результате разбавления нерадиоактивным исходным образцом того же соединения в смеси указывает на содержание последнего в исходной смеси. Например, если удельная активность вьщеленного образца совпадает с удельной активностью добавляемого соединения, то это означает, что данное соединение отсутствует в исходной смеси и регистрируется лишь то, что было введено в смесь. Если удельная активность выделенного образца равна половине удельной активности добавленного соединения, такое соединение присутст- [c.428]


    Методы изотопного разбавления позволяют определить количество химического вещества, содержащееся в некотором образце, не проводя его количественного разделения и анализа. Как это делается  [c.437]

    Метод изотопного разбавления — другой важный аналитический метод, основанный на использовании явления радиоактивности. Например, если соединение невозможно выделить в чистом виде, то его нельзя количественно определить классическими методами анализа. Если же в анализируемую смесь ввести следовое количество радиоактивного изотопа определяемого компонента и тщательно смешать, то даже при неполном отделении определяемого компонента можно определить его содержание в анализируемой пробе. Обозначим количество определяемого компонента в граммах в анализируемой пробе через а дополнительно введенное в пробу количество этого вещества в радиоактивной форме через w (его активность обозначим как А). После тщательного смешивания выделяют д грамм чистого компонента или соединения этого компонента, имеющего активность В. Необходимые расчеты можно провести по уравнениям [c.390]

    Количественное определение ионов иода, брома и хлора при их совместном присутствии путем осаждения галогенидов серебра затруднено вследствие почти одинаковой рас/воримости галогенидов серебра. Однако в аммиачном растворе иодид серебра может быть частично осажден в чистом состоянии без примесей бромида н тем более хлорида серебра. Это позволяет определять ионы иода в присутствии ионов брома и хлора методом изотопного разбавления. [c.353]

    Метод изотопного разбавления целесообразно применять для количественного определения близких по свойствам компонентов трудноразделяемых смесей. В этом методе необходимо выделять не все определяемое вещество, а лишь часть его в возможно более чистом состоянии. Тем самым устраняется необходимость применения трудоемких и длительных методов выделения веществ, таких, как фракционная кристаллизация и др. [10. 11]. [c.313]

    При количественном анализе сходных, но трудно разделяемых веществ может, быть с успехом применен метод изотопного разбавления. При этом не требуется количественного выделения исследуемых веществ, нужно лишь выделить пробу с максимальной степенью чистоты. Выбор варианта метода изотопного разбавления определяется в основном видом и составом анализируемого образца. В простейшем случае количество анализируемого вещества определяют по формуле [c.153]

    В работе [139] описано определение метанола и этанола в водных растворах с использованием модифицированного метода с радиореагентом и изотопным разбавлением, в котором радиореагентом является само определяемое соединение и не требуется количественного превращения в производное. В этом методе к анализируемой пробе добавляют определенные количества спиртов, меченных изотопом с известной удельной радиоактивностью и затем обрабатывают ее 3,5-динитробензоилхлоридом. Образующиеся эфиры выделяют с помощью жидкостной хроматографии в колонке. Вес каждого спирта в пробе находят по формуле (6), в которой вес выражен в грамм-молях, а удельные радиоактивности — в единицах радиоактивности на моль. При этом нет необходимости в избытке реагента, если достаточное количество производного образуется при добавлении менее 1 экв реагента. Если имеется метод разделения, который позволит получить каждое из производных в чистом виде в количестве, достаточном для определения удельной радиоактивности, то в принципе все компоненты с гидроксильными группами можно определить в анализе одной пробы. Описанный метод обладает потенциально высокой чувствительностью, поскольку веса разделенных 3,5-динитробензоатов можно определить с помощью абсорбционной спектрофотометрии. Однако применение этого метода ограничено лишь соединениями, для которых можно получить меченые аналоги с достаточно высокой удельной радиоактивностью. [c.82]

    Представляет ценность и метод изотопного разбавления, в котором определяемая карбоновая кислота является радиореагентом, а производное образуется из нерадиоактивного соединения. В этом методе не требуется количественного получения производного. Он особенно удобен и при разделении кислот-гомологов или кислот, родственных по другим признакам, когда применение изотопного разбавления с использованием только Меченой кислоты недостаточно эффективно. Этот метод применялся в работе [115] для анализа смесей хлорированных феноксиуксусных кислот. В этом анализе синтезировали меченые (изотопом С1) и чистые немеченые анализируемые кислоты (например, 2,4-дихлор- и 2,4,5-трихлор-феноксиуксусные). Известное количество меченой кислоты в растворе добавляли к анализируемой пробе, а также к определенному количеству той же самой чистой немеченой кислоты. В раствор с меченой кислотой намеренно добавляли значительные количества [c.160]


    Точность метода изотопного разбавления зависит от ряда факторов от радиохимической чистоты изотопа, удельной активности применяемого индикатора, соотношения количеств определяемого элемента и индикатора в исследуемых растворах,чистоты выделенных Соединений, от техники и методики радиометрических измерений 18]. При соблюдении оптимальных условий будут иметь значение лишь аналитические погрешности обычного количественного анализа, например, неточность взвешивания, колориметрического определения и т. д. [c.230]

    Метод изотопного разбавления был также использован для количественного спектрального определения урана в разных продуктах в диапазоне 1—0,005% U путем введения в пробу в качестве внутреннего стандарта изотопов определяемого элемента или или обоих вместе [40] (см. гл. VH). [c.236]

    Так же как и в случае оксисоединений (гл. 1), для анализа первичных и вторичных аминов применим метод с прямым изотопным разбавлением с радиореагентом, в котором для количественного образования производных используется нерадиоактивный [c.311]

    Важно, что для метода изотопного разбавления нет необходимости отделять изучаемый компонент количественно, однако массу выделенной части определяют, используя любой из методов количественного анализа, например гравиметрию. Предел обнаружения ограничен необходимостью определения массы выделенной доли вещества. [c.380]

    Масс-спектрометрия позволяет выполнять количественные определения различных элементов методом изотопного разбавления с использованием стабильных изотопов. [c.313]

    Метод изотопного разбавления пригоден для количественного определения веществ, выделяемых методом ХТС, лишь с небольшими выходами. [c.74]

    Другим вариантом количественного анализа с использованием р-излучения является метод изотопного разбавления. К анализируемому образцу добавляют известное количество определяемого элемента, меченного его радиоактивным изотопом, с известной интенсивностью излучения. После этого исследуемый элемент тем или другим путем выделяют из анализируемого вещества, осаждают, экстрагируют, выделяют электролизом и т. д. По активности известного количества выделенного продукта можно определить / содержание исследуемого элемента по 1 формуле сг = -  [c.519]

    Процессы изотопного обмена имеют очень важное значение для решения многих химических, биологических и физических проблем. Особый интерес они представляют для радиохимии и изотопных методов исследования. Детальное изучение процессов изотопного обмена — одно из важнейших условий понимания природы химических реакций, индуцированных ядерными превращениями, разработки методов обогащения радиоактивных изотопов и разделения ядерных изомеров. Только с учетом количественных характеристик реакций изотопного обмена можно правильно определять выход продуктов ядерных реакций, а также получать правильные результаты активационного анализа и анализа методом изотопного разбавления. Процессы изотопного обмена лежат в основе установления природы химических связей, их равноценности в молекуле, а также методов получения меченых соединений. Особое значение эти процессы имеют для изучения механизма реакций. [c.10]

    В последние годы для количественного анализа часто применяется метод изотопного разбавления. Он позволяет определять сходные по свойствам химические элементы и соединения в смесях без количественного выделения каждого из компонентов смеси. При этом содержание изучаемого элемента (или соединен ния) находят по изменению удельной активности (изотопного состава) в результате изотопного разбавления [203—210]. [c.109]

    Во втором случае при использовании метода изотопного разбавления для количественного определения доли элемента, существующего в виде данной химической формы, необходимо применять радиоактивный изотоп в форме, идентичной определяемой или вступающей с ней в быстрый изотопный обмен и не способной к такому обмену с другими формами. [c.110]

    Рассмотрим некоторые примеры использования метода изотопного разбавления для количественного определения радиоактивных веществ. [c.115]

    Первая часть этой задачи решается с помощью процессов гидролиза, происходящих под влиянием энзимов или сильных щелочей и кислот. Особенно хорошие результаты получаются при использовании в качестве гидролизующего агента 6 н. НС1. В этом случае для полного расщепления белковых молекул на аминокис-, лоты необходима обработка белка 6 н. НС1 при температуре 100° С в течение 10—15 ч. Вторая часть этой задачи — анализ образующихся весьма сложных смесей аминокислот — сопряжена с более серьезными трудностями. Обычные методы анализа подобных смесей, связанные с необходимостью количественного выделения всех компонентов смеси, очень трудоемки и приводят к большим погрешностям. Этим объясняются сильные расхождения — в несколько десятков процентов, — при анализе аминокислотного состава различных белков. Метод изотопного разбавления позволяет достигать точности до нескольких десятых долей процента. В этом случае к гидролизату добавляется одна из входящих в его состав аминокислот, меченная углеродом-14. После этого из раствора осаждается некоторое количество определяемой аминокислоты и проводится тщательная очистка ее от примесей. Зная [c.115]

    Расчет массовой доли (%) органического соединения, меченого стабильным тяжелым изотопом одного из элементов-органогенов (2Н, С, и др.), по интенсивностям сигналов различных ионов в масс-спектре, используется при исследовании механизмов органических реакций и лежит в основе одного из наиболее точных методов количественного масс-спектрометрического анализа — метода изотопного разбавления [31]. Рассматриваемый ниже алгоритм расчетов и программа 20 предназначены для чаще всего встречающегося простейшего случая, ко-где массовое число меченого тяжелым изотопом соединения отличается от немеченого на единицу за счет присутствия только одного атома какого-либо из изотопов — Н, С или N. [c.33]

    Дальнейшее развитие ультрамикрохимических методов количественного анализа будет особенно плодотворным при применении радиоактивных индикаторов, которые позволяют проверять надежность методов разделения элементов осаждением малорастворимых соединений, экстракцией или ионообменной хроматографией. Перспективным для применения в ультрамикроанализе является также метод изотопного разбавления, в котором не требуется количественного выделения определяемого компонента [115, 116]. [c.144]

    Стимулирование метаболизма арахидоновОй кислоты в коже человека под воздействием ультрафиолетового облучения (100—290 нм) изучали Грейс и соавт [267], которые использо вали ХМС метод с изотопным разбавлением для количествен ного определения арахидоновой кислоты, РОЕ2 и РОРг в коже (в норме и после облучения) Содержание всех трех соеди нений повышалось после облучения, однако предварительный [c.190]

    Для контроля чистоты веществ можно использовать методы классического химического анализа. Например, иодометрически можно определять медь примерно до 10 г/мл раствора. Вообще же для количественного определения примесей в ос. ч. веществах требуются новейшие методы, отличающиеся высокой чувствительностью и селективностью а) фотометрические (колориметрия, спектрофотометрия, пламенная фотометрия) б) флуоресцентные (фосфоресценция, флуоресценция , катодо- и хемилюминесценция и др.) в) электрометрические (полярография, особенно осциллографическая, по-тенциометрия, кондуктометрия, кулонометрия и др.) г) спектральные, обладающие высокой чувствительностью, но малой точностью д )масс-спектрографические , е) радиохимические (активационный анализ, изотопное разбавление и др.) ж) электрофизические (измерение-проводимости, эффекта Холла и др.) з) концентрирование микропримесей в малых объемах (экстракцией, со-осаждени-гм, хроматографически, ионным обменом, электролизом, зонной плавкой и т. д.) с последующим определением их разными способами. [c.319]

    Хорошим реагентом для определения макроколичеств карбоновых кислот, ангидридов и хлорангидридов методом изотопного разбавления является п-хлоранилин- С1. Для оценки содержания этих соединений в форме анилидов применяли также и некоторые хлор-феноксиуксусные- С1 кислоты. Как правило, анилиды имеют резко выраженную температуру плавления и их можно очищать путем кристаллизации. Многообещающим радиореагентом для анализа меньших количеств веществ является /г-иоданилин- Ч. Образуемые им меченые я-иоданилиды сначала вводят в хроматографическую колонку, а затем счетчиком с твердым сцинтиллятором измеряют распределение радиоактивности вдоль этой колонки. Преимущество первичных ароматических аминов состоит в том, что обычно ангидриды и хлорангидриды карбоновых кислот реагируют с ними количественно в мягких условиях. [c.158]

    Так же как и в случае оксисоединений (гл. 1), для анализа первичных и вторичных аминов применим метод с прямым изотопным разбавлением с радиореагентом, в котором для количественного образования производных используется нерадиоактивный З-хлор-4-метоксибензоилхлорид с последующим добавлением [c.311]

    Преимуществом метода изотопного разбавления по сравнению с другими методами аналитической химии является возможность количественного определения содержания элементов при неполном выделении их из раствора или регистрации только некоторой доли содержания элементов в растворе [40, 447]. Для определения хрома очень выгодно использовать эту особенность методов изотопного разбавления из-за его неполной атомизации в пламени или при других способах атомизации, неполного перехода в плазму и медленной кинетики образования комплексных соединений Сг(И1). Наибольшее применение находит использование субсте-хиометрического принципа. [1016] в методе изотопного разбавления. Принцип субстехиометрии состоит в том, что выделение определяемого элемента из анализируемого и эталонного растворов производится добавлением равных, но меньших по сравнению со стехиометрией количеств реагента, что позволяет выделить рав- [c.63]

    Количественное определение следов компонентов в биологических образцах с помощью ГХ — МС — задача достаточно сложная Вероятно, для количественного определения одиночного соединения наилучшим является метод изотопного разбав ления, при этом исследователь должен иметь в своем распоря женин дейтерированные лекарственные препараты и (или) их метаболиты с достаточно высокой изотопной чистотой Следует отметить что дейтерированные анаболические препараты недоступны и, с другой стороны метод изотопного разбавления не всегда применим для анализа большого числа следовых компо иентов В этих случаях имеет смысл выбирать в качестве внут реннего стандарта соединения, характеризующиеся хорошими масс спектральными характеристиками и удобным для анализа временем удерживания В работе [84] в качестве внутреннего [c.139]

    Определение стероидных гормонов (эстрадиол, эстроил, тес тостерон, прогестерон, альдостерон и кортизол), основанное на методе изотопного разбавления и ГХ—МС анализе, рассмотре но в обзоре Сикмена [253] В частности, метод СИД с меченым соединением в качестве внутреннего стандарта применен для количественного определения сывороточного холестерина [c.189]

    В качестве следующего примера рассмотрим работу Сейлера и Свита 22] по электровесовому определению кобальта в стали и других сплавах. Причиной, вызвавшей применение в данном случае метода изотопного разбавления послужило то, что кобальт, осажденный на аноде в виде С02О3, склонен образовывать плохо пристающий слой а это мешает использовать обычный метод весового определения, однако при изотопном разбавлении потеря частичек окиси во время промывки и сушки не имеет значения. При этом возможны другие упрощения, как, например, замена количественного фильтрования и промывки цен-трифугованием. Для анализа подготавливается калибровочная кривая, аналогичная изображенной на рис. 14.8, путем добавления равных частей Со ° к образцам, содержащим различные количества чистого кобальта, п последующего электроосаждения С02О3 в стандартных условиях. Немедленно после растворения анализируемого образца к нему добавляют порцию Со °. Для удаления элементов, которые мешают электролизу, проводится химическая обработка. После этого кобальт осаждают, осадок взвешивают и определяют его активность. Количество кобальта в исходном образце определяют с помощью калибровочной кривой. Среднеквадратичное отклонение изменяется от 0,005 до 0,025%. [c.224]

    Известен и другой вариант определения аминокислот методом изотопного разбавления [217, 218]. К анализируемой смеси аминокислот прибавляется пипсилхлорид (п-иодфенилсульфонилхло-рид), меченный иодом-131. При соответствующих условиях аминокислоты количественно (98—100%) превращаются в меченые монопипсиламинокислоты (сульфонамиды), которые затем выделяются из смеси. В качестве носителя используется неактивный сульфонамид определяемой аминокислоты, причем в анализируемую смесь прибавляется большой избыток носителя. Очистка сульфонамидного производного, ставшего активным в результате изотопного разбавления, производится экстракцией и перекристаллизацией. [c.116]

    Так как количества продуктов радиолиза очень малы, то определение и разделение их методами обычной химии осуществить практически невозможно. Количественное определение вы.хода полифенилов легко провести методом изотопного разбавления [220]. Для этой цели к облученному у-квантами дифенилу, меченному углеродом-14 в фенильной группе, добавлялись неактивные носители ожидаемых полифенилов. Основное вещество (дифенил) удалялось сублимацией. Образующиеся в результате радиолиза полифенилы разделялись с помощью хроматографии на окиси алюминия и перекристаллизовывались из подходящих растворителей до получения образцов с постоянной удельной активностью. Выход полифенилов рассчитывался по обычной формуле для изотопного разбавления. [c.117]

    При определении азота меченый элемент добавляется в виде аммиака. Образец окисляется окисью меди для исключения возможности занесения следов азота, который мог бы быть в кислороде. Гроссе, Гиндин и Киршенбаум не пытались в своих опытах достигнуть равновесия. При анализе газообразного азота они использовали пики с массами 28, 29, 30, на основании которых фактор изотопного разбавления вычислялся аналогично описанному выше при анализе Подобные эксперименты проще обычных химических аналитических методов и не требуют количественного выделения продукта. Точность определения, которая зависит от степени обогащения и количества изотопного индикатора, а также от конструкции масс-спектрометра, рассматривалась Риттенбергом и Фостером [1700]. [c.113]


Смотреть страницы где упоминается термин Методы количественного изотопного разбавления: [c.189]    [c.414]    [c.59]    [c.505]    [c.283]    [c.229]    [c.229]   
Введение в химию полупроводников Издание 2 (1975) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопное разбавление

Количественный методы



© 2025 chem21.info Реклама на сайте