Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффективность разделения капиллярных

    Аналогичная ситуация наблюдалась и для газовой хроматографии, для которой была найдена новая форма, отвечающая высоким требованиям разделения. Как и в жидкостной хроматографии, она была связана с сильным уменьшением поперечного сечения колонки. Диаметр трубки колонки делается столь малым, что в случае распределительной газовой хроматографии потребность в твердом носителе отпадает, а неподвижная жидкая фаза наносится на внутреннюю стенку трубки в виде пленки. В связи с малым диаметром трубки колонки эта форма, описанная Гол еем (1958), называется капиллярной хроматографией. Поскольку внутреннюю поверхность трубки можно покрыть адсорбентом, в капиллярных колонках может осуществляться также газоадсорбционная хроматография. Капиллярная трубка обладает меньшим сопротивлением потоку газа-носителя, чем наполненная мелкими частицами более широкая трубка, так что возможно применение в десятки раз более длинных колонок. Большое внимание привлекла прежде всего высокая эффективность разделения капиллярных колонок. Однако необходимость использования очень малых количеств пробы внесла ряд аппаратурных трудностей, которые долгое время препятствовали распространению капиллярной хроматографии. [c.21]


    Благодаря высокой эффективности разделения капиллярные колонки считались вначале пригодными главным образом для анализа многокомпонентных смесей. К первым сенсационным сообщениям о применении [c.345]

    Высокая эффективность разделения капиллярных колонок используется не только для решения трудных задач разделения, но также и в экспресс-анализе. При максимально короткой колонке, высокой скорости газа-носи-теля и применении водорода в качестве газа-носителя время анализа может составлять всего несколько секунд. Однако сильно уменьшенная в результате этого разделительная снособность оказывается достаточной лишь для простых задач разделения. [c.348]

    Капиллярно-фильтрационная модель механизма селективной проницаемости позволяет объяснить влияние внешних факторов на процесс разделения электролитов и водных растворов органических веществ и получить некоторые расчетные зависимости для определения основных характеристик процесса. Так, учет влияния концентрации электролита в исходном растворе на эффективность разделения обратным осмосом может быть проведен на основе представлений об определяющем влиянии гидратирующей способности ионов [116, 158, 163]. Согласно этим представлениям, чем выше гидратирующая способность ионов электролита, тем больше и прочнее гидратная оболочка ионов, что, в свою очередь, затрудняет их переход через поры мембраны. Поэтому в разбавленных растворах, когда сила связи ион — вода меняется незначительно, селективность остается практически постоянной (область И на рис. IV-18,б). С увеличением концентрации электролита эта связь ослабевает и селективность снижается. [c.204]

    Высокая эффективность разделения при относительно мапом объеме анализируемого раствора и простота аппаратуры явились причинами того, что капиллярный зонный электрофорез широко применяется в настоящее время для определения биологически активных ветцеств, в том числе белков, токсинов, ядохимикатов и продуктов их метаболизма, в растительных и животных тканях [117,1181. Дк разделения незаряженных молекул в раствор вводят соединения, которые образуют комплексы с определяемыми веществами. Наиболее часто в этих целях используют циклодекстрины П19 . Последние выступают в роли локомотива , который увлекает за собой нейтральные молекулы щзи движении внутри капилляра. В частности, таким способом удалось осуществить выделение некоторых ПАУ и ПХБ из биологических матриц [120,121). В [c.228]

    Предложенный Голеем [71] вариант газовой хроматографии, существенно повышающий эффективность разделения и позволяющий проводить экспрессный анализ, получил название капиллярной хроматографии. [c.137]


    Концентрирование примесей равновесного газа при пневматическом отборе проб. Необходимость промежуточного накопления веществ, содержащихся в газовой фазе сосуда с пробой, до введения в хроматографическую колонку, возникает в случаях, когда прямое дозирование либо не обеспечивает достаточной чувствительности анализа, либо снижает эффективность разделения, как это имеет место при анализе с капиллярной колонкой. Расчеты анализов с однократным отбором пробы и концентрированием не отличаются от описанных выше случаев с известными и неизвестными /(иг. Когда накопление примесей в концентраторе производится многократным отбором газа из сосуда с пробой, масса отобранного вещества за п дозирований может быть вычислена по одной из следующих формул  [c.241]

    Внимание Увеличивать дозу при работе с капиллярными колонками опасно-, это может привести к захлебыванию колонки, снижению эффективности разделения и смыванию неподвижной фазы со стенок колонки. [c.282]

    Капиллярная газовая хроматография. В 1957 г. Голеем был предложен вариант хроматографии, который значительно повысил эффективность разделения. В этом методе колонка представляет собой стеклянную или металлическую длинную капиллярную трубку диаметром 0,2—0,3 мм. На внутренние стенки [c.625]

    В случае газовой хроматографии эффективность разделения наполненных колонок обычно вполне удовлетворяет аналитическим требованиям, так что к использованию капиллярных колонок прибегают редко. Как прави- [c.21]

    По-видимому, число теоретических тарелок п не пригодно в качестве меры эффективности разделения, так как, во-первых, число теоретических тарелок, необходимое для разделения пары веш еств с данным относительным удерживанием, очень различно для капиллярных и заполненных колонок, [c.43]

    При оценке эффективности разделения на капиллярных колонках следует ограничиться указанием либо параметров и приближенной функции (41), либо а или 8 для определенного вещества с соответствующим В случае заполненных колонок острота разделения в известных пределах зависит от природы вещества в такой же степени, как и число теоретических [c.47]

    Изменение эффективности разделения при больших длинах колонок можно проследить на примере капиллярных колонок. На рис. 20 представлена зависимость остроты разделения от длины колонки. Отклонения от линейности для широкого интервала значений пренебрежимо малы. [c.62]

    Оценка эффективности разделения и разделительной способности заполненной и капиллярной колонок с учетом времени анализа [c.65]

    Приготовление заполненных высокоэффективных хроматографических колонок описано в фундаментальной работе Чешира и Скотта (1957). Эти исследователи получили колонки с эффективностью в 30 ООО теоретических тарелок и разделили м- и ге-ксилолы на сквалане. После открытия капиллярных колонок достижение такого рода экстремальных значений эффективности разделения не представляло особого интереса. Однако практика ставила бесчисленные задачи, которые целесообразно было решать на заполненных колонках, причем часто имела значение разделительная способность колонки. Необходимо придерживаться некоторых правил при изготовлении и производстве высокоэффективных хроматографических колонок. [c.68]

    Поскольку на капиллярных колонках при нормальных условиях получают повышенную эффективность разделения, можно надеяться, что и в условиях экспресс-анализа они будут обладать достаточной эффективностью разделения. Многочисленные экспериментальные результаты, в том числе работа Дести и сотр. (1962) (рис. 24), подтверждают это предположение. Разделением девяти изомеров гептана за 5 сек или углеводородной смеси, [c.72]

    И обычных капиллярных материалов меньше, чем иоверхностное натяжение жидкости, так что вместо равномерной пленки образуются мелкие капли. Эффективность разделения в этом случае очень мала из-за того, что поверхность раздела между жидкой и газовой фазами незначительна, а толщина пленки велика. Кроме того, существует опасность постепенного уноса неподвижной фазы из колонки вместе с газом-носителем или слияния отдельных капель в большие капли, закупоривающие капилляр при относительно высокой вязкости неподвижной фазы. Однако и в случае достаточно малополярной неподвижной фазы следует принять некоторые меры предосторожности, так как в противном случае не образуется прочной пленки одинаковой толщины. [c.323]

    Златкис и Уокер (1963) модифицировали внутреннюю поверхность медного капилляра другим методом. Они наносили на внутренние стенки капилляра металлическое серебро, используя раствор цианистого серебра, или обрабатывали капиллярную трубку 15%-ными водными растворами хлорида золота, тетрахлорида платины, нитрата серебра, изменяя тем самым свойства поверхности. Бихромат калия также оказался пригодным для модифицирования поверхности. Предварительно посеребренные или обработанные бихроматом калия капилляры с неподвижной фазой из н-гекса-декана, нанесенного из 10%-ного или 20%-ного раствора, дали самые лучшие результаты по разделению. Эффективность разделения измерялась числом теоретических тарелок для циклогексана (рис. 12). [c.327]


    Открытые колонки внутренним диаметром около 1 мм — мы называем их широкими капиллярными колонками — принадлежат по своей разделительной способности к истинным капиллярным колонкам. Они оказались эффективней заполненных колонок обычного диаметра (4—6 мм). Допустимое количество пробы значительно выше, чем у истинных капиллярных колонок. Количество пробы составляет примерно 1 мкл, и можно обойтись без применения делителя потока (ср. разд. 5.3.2). При больших количествах пробы проще применять другие физикохимические методы (как, нанример, масс-спектрометрию) для идентификации хроматографических пиков. Наконец, при больших диаметрах удобнее изготовлять и очищать колонки, а также наносить неподвижную фазу. При умеренных требованиях к эффективности разделения широкие капиллярные колонки можно рассматривать как наиболее удобный тип колонок. [c.336]

    Чтобы избежать трудностей, связанных с проблемой введения микроколичеств вещества, было предпринято много попыток повышения допустимой величины пробы для капиллярных колонок без потери в эффективности разделения. Увеличение количества неподвижной фазы путем нанесения [c.337]

    Кроме высокоэффективных и экстремально быстрых анализов с помощью капиллярных колонок можно проводить анализ широких фракций. Варьирование рабочих условий при работе на капиллярных колонках очень скоро показало, насколько уменьшается эффективность разделения при увеличении области температур кипения разделяемых компонентов. Примером этого может служить анализ семи к-алканов (рис. 31) при хорошем разделении изомеров. При еще более широкой области температур кипения, охватывающей примерно 12—15 членов гомологического ряда, разделение, конечно, значительно ухудшается. В то время как на заполненных колонках могут быть разделены все члены гомологического ряда, содержащиеся в таких пробах, капиллярная газовая хроматография при значении критерия разделения для гомологов К = 2—6 обладает такой разделительной способностью, что может отделять, кроме того, отдельные изомеры. [c.349]

    На капиллярных колонках значение эффективности разделения, определяемое высотой теоретической тарелки, часто получается завышенным (см. гл. II). Использование величины 8 (острота разделения) вместо п (число теоретических тарелок) устраняет этот недостаток. На особым образом приготовленных заполненных колонках может быть достигнута острота разделения 20 000—30 ООО, но обычно она составляет меньше 10 ООО. На капиллярных колонках для хорошего разделения узких фракций получают значения остроты разделения между 30 ООО и 150 ООО. [c.357]

    ЛО, выигрыш во времени, связанный с более высокой эффективностью разделения капиллярной газовой хроматографии, не настолько велик, чтобы отдавать ей нредпочтение в сравнении с более грубым методом колоночной хроматографии. К тому же капиллярная хроматография открывает меньшие возможности для идентификации. Таким образом, капиллярные колонки не могут полностью заменить наполненные колонки, а лишь дополняют их. [c.22]

    Существенное влияние на эффективность разделения оказьшает равномерность заполнения колонки сорбентом Применение находят два способа сухой и суспензионный. Последний способ применяют в тех случаях, когда размер частиц сорбента менее 30-50 мкм. Суспензию готовят в подходящем растворителе, контакт с которым не изменяет свойств сорбента, и вводят в колонку под давлением с высокой скоростью. Общие при1[ципы способов заполнения, выбора высоты и диаметра колонок достаточно подробно рассмотрены в литературе 101-103]. Следует заметить, что в настоящее время наблюдается тенденция к пер< ходу на микроколонки диаметром 1 мм и менее. В частности, развивается капиллярный вариант колоночной хроматофафии, В этом случае неподвижную жидкую фазу наносят в виде тонкой пленки на стенки колонки. Толщина пленки равна 1-5 мкм при диаметре капилляра от 20 до 250 мкм [104], Основные ограничения для капиллярных колонок связаны с их малой вместимосгью масса разделяемых веществ не превьпиает микрофаммо-вых количеств, а объем пробы - долей микролитра, [c.224]

    Применение капиллярных колонок помимо существенно увеличивающейся эффективности разделения обеспечивает и большую надежность значений индексов в этом случае (при использовании стандартной аппаратуры и термостабильных, а также не подверженных химическому окислению неподвижных фаз) межлабора-торная воспроизводимость значений / составляет (1—2) ед. Важно подчеркнуть, что усовершенствование процедуры нанесения неподвижных фаз на специально подготовленную поверхность стеклянного капилляра, последующее аккуратное кондиционирование колонки, использование газов-носителей, с максимальной тщательностью очищенных от нежелательных примесей (кислород, влага и др.), а также обязательная герметизация (запаивание) концов капилляра при хранении обеспечивают возможность весьма длительной (1—7 лет) эксплуатации колонок без > зменения рабочих характеристик [481. [c.176]

    Как показывают уравнения (4) и (5), возможность хроматографического разделения зависит от относительной дисперсии или o/t r и от отношения величин удерживания г2/ г1 или t4r2ltdг Таким образом, разделение компонентов зависит от двух характеристик хроматографической колонки. Одна из них описывает различие во времени удерживания отдельных комио-нентов и называется разделительным действием. Другая характеристика определяет величину размывания за время удерживания, т. е. относительную ширину хроматографического пика, и называется эффективностью разделения. Далее мы обсудим математические выражения, которые дают возможность оценить обе характеристики хроматографических колонок. Прежде всего к таким выражениям можно отнести величины из уравнения (4). С использованием относительно длинных, в особенности капиллярных, колонок стало необходимым применять величины, входящие в уравнение (5), поскольку они лучше учитывают механизм разделения. [c.30]

    Так как величина разделения в капиллярных колонках обнаруживает сильную зависимость от приведенного времени удерживания, отнесенного к мертвому времени, оценка эффективности разделения затруднительна. Вооб-ш е говоря, критерий оценки колонки,. зависяш,ий от природы разделяемых веществ, не может быть выражен одним параметром, таким, например, как величина разделения эффективность разделения должна представляться скорее-в виде функциональной зависимости, чем какой-либо конкретной величиной. [c.46]

    Для идеального случая, т. е. когда величина разделения = trlb для всех компонентов одинакова, 2-величину можно определять на любой паре веществ этого ряда. К сожалению, это условие приближенно выполняется лучше всего на заполненных колонках. На капиллярных колонках эффективность разделения и соответственно величина разделения меньше для компонентов с коротким временем удерживания. Это автоматически отражается на -величине. [c.53]

    Изменение давления в колонке редко используют для улучшения ее характеристик. Повышенное давление улучшает эффективность разделения, но зато затрудняет ввод пробы и требует более сложной аппаратуры. Несколько лет назад пониженное давление применяли в колонке для того, чтобы проводить хроматографическое разделенпе при более низкой температуре. В этом случае обнаруживается влияние давления на удерживание и продолжительность анализа . Мы считаем излишним рассматривать здесь хроматографический процесс при пониженном давлении, поскольку в настоящее время существуют более эффективные приемы снижения температуры колонки. Обычно работают при атмосферном давлении на выходе колонки и при повышенном давлении на входе В заполненных колонках давление на входе обычно меньше 2 атм. Для капиллярных колонок вследствие более высокого перепада давления нередко приходится создавать давление р,, до 5 атм. [c.56]

    В 1957 г. Мартин на I симпозиуме по газовой хроматографии в Лондоне высказал мысль о том, что в будущем хроматографические измерения можно будет успешно проводить для микрограммовых образцов на высокоэффективных колонках диаметром 0,2 мм. Осуществление этой идеи уже в 1958 г. является примером быстрого развития газовой хроматографии. На II Международном симпозиуме в Амстердаме Голей (1958) дал математическое описание процесса разделения в капиллярной трубке, смоченной жидкостью. В то же время предложение использовать капиллярные колонки поддержали Дийкстра и де Гоей (1958). Теоретически предсказанная высокая эффективность разделения была подтверждена в работах Дести (1959), Дести и сотр. (1959) на медных капиллярах и Скоттом (1959) на капиллярах из найлона. Впоследствии над проблемами капиллярной газовой хроматографии работали во многих институтах. Уже первые публикации показали, [c.311]

    Вскоре, однако, оказалось, что разделительная способность капиллярных колонок не соответствовала столь высокому числу теоретических тарелок. Пернелл дал этому явлению первое объяснение и предостерег от переоценки возможностей капиллярных колонок. Многочисленные практические применения и подробные исследования (см. также Штруппе, 1962) убедительно показали, что капиллярная газовая хроматография все же позволяет повысить эффективность разделения. Несмотря на экспериментальные трудности, капиллярная газовая хроматография нашла вскоре широкое применение, и в 1961 г. появилось сообш ение о ее использовании для количественного анализа (Халас и Шнейдер). [c.312]

    Как установили Руайхеб и Гамильтон (1961) на примере капиллярных колонок, заполненных фенокситиином, свойства капиллярных колонок очень сильно изменялись за время шестимесячного хранения. Если на такой капиллярной колонке длиной 18,3 м при 62° через 4 недели после нанесения неподвижной фазы и четырехчасового кондиционирования удавалось за 18 мин получить практически полное разделение п-, м-, о-ксилолов и этилбензола, то после хранения ее в течение 6 месяцев при комнатной температуре она полностью отказала в работе. Ее эффективность разделения резко уменьшилась. [c.326]

    Хроматографическая колонка длиной 8 м с полиэтиленгликолем 200, нанесенным из 0,5%-ного раствора, при температуре 20° обладала эффективностью разделения, соответствующей 1500 теоретическим тарелкам на 1 м длины. Немодифицированный капилляр при точно таких же условиях имел 150—300 теоретических терелок. Имеется ли в подобного рода капиллярных колонках сплошная пленка, как в голеевских колонках, или неподвижная фаза распределена на дисперсной поверхности, пока точно не установлено. И все же этот метод имел известный успех при использовании полярных неподвижных фаз в капиллярных колонках. [c.331]

    На капилляры с промежуточным слоем из эпоксидной смолы можно наносить неподвижные фазы с такой полярностью, что бензол элюируется с таких колонок после нонана (рис. 19). С другой стороны, благодаря этим промежуточным слоям удалось получить разделение кислородсодержащих и галогенсодержащих веществ на дедероповых капиллярах. Из многочисленных опытов по нанесению неподвижной фазы Керер (1964) установил следующее эмпирическое правило капиллярные колонки с промежуточными слоями имеют преимущество в отношении эффективности разделения при наличии известного химического сродства между промежуточным слоем и неподвижной фазой. Удивительно, например, что на эпоксидной смоле, которая состоит преимущественно из эфиров, нолигликоль и эмульфор показали самое лучшее разделение. С другой стороны, к цапон-лаку, для которого трикрезилфосфат является хорошим пластификатором, особенно хорошо пристает пленка из трикрезилфосфата. Недостатком описанного способа является то, что, хотя при применении промежуточных слоев возможно использование полярных неподвижных фаз, выбор последних весьма ограничен. [c.333]

    У продажны.х газовых хроматографов при длине колонки 2 м эффективность разделения соответствует 2000 теоретических тарелок. При использовании капиллярных колонок длиной до 30 м эффективность разделения возрастает в 10—20 раз. Для прецнзнонны.ч приборов она может достигать 500000 теоретических тарелок. [c.98]

    В тех суспензией сорбента покрывают стеклянную или металлич. пластинку получ. слой высушивают на воздухе и нагревают для удаления следов влаги (активируют). Широко использ. промышленно изготовленные пластины с закрепленным слоем. Размеры пластин варьируют от 2 X 2 до 10 X 20 см. На слой сорбента наносят капли анализируемого р-ра объемом 1 — 10 мкл. Край пластины погружают в р-ритель. Эксперимент проводят обычно в камере — стеклянном сосуде с притертой крышкой. Р-ритель перемещается по слою под действием капиллярных сил. Возможно одновременное разделение нескольких разл. смесей. Предложен т. н. колоночный вариант ТСХ, в к-ром р-ритель под давл. пропускают через слой сорбента, покрытый плотно прижатой полиэтиленовой пленкой это позволяет значительно сократить время разделения. Для увеличения эффективности разделения использ. Линия многократные элюирования в том же или перпендикулярном нап-фроита равлении, тем х<е илн др. эшо-ентом. [c.584]

    Капиллярные иасадочные колонки обладают нек-рыми преимуществами перед полыми колонками более высокой удельной эффективностью (10-30 тыс. теоретич. тарелок/м) простотой реализации газо-адсорбц. варианта хроматографии возможностью эффективного разделения и экспрессного аналит. определения легко- и среднесорбируемых соед. (включая неорг. газы) возможностью использования в термостате колонок малого объема (миниатюризация газохроматографич. ахшаратуры). Осн. препятствие для широкого применения таких колонок в существующих приборах для газовой хроматографии - значит. сопротивление потоку газа-носителя. [c.309]


Смотреть страницы где упоминается термин Эффективность разделения капиллярных: [c.77]    [c.229]    [c.255]    [c.46]    [c.311]    [c.312]    [c.334]   
Руководство по газовой хроматографии (1969) -- [ c.334 ]

Руководство по газовой хроматографии (1969) -- [ c.334 ]




ПОИСК





Смотрите так же термины и статьи:

Капиллярная

Капиллярность



© 2025 chem21.info Реклама на сайте