Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография, методы колоночная

    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]


    Количественное определение ионов методом осадочной хроматографии основано на прямолинейной зависимости между количеством хроматографируемого вещества и размером зоны. Характерным признаком осадочной хроматограммы являются четкие границы зон и одинаковая интенсивность окраски зон по длине, что свидетельствует об одинаковой плотности осадка, образующего зону (см. стр. 205). Этого не всегда можно достигнуть другими методами хроматографии. Это преимущество осадочной хроматографии (как колоночной, так и тонкослойной или бумажной) позволило достаточно эффективно использовать ее для количественного анализа разделяемых ионов. [c.210]

    Применение колоночной распределительной хроматографии. Успехи, достигнутые в развитии современной жидкостной распределительной хроматографии, позволяют решать различные аналитические задачи. Ранее этот метод использовался редко, так как из-за малой эффективности колонок значительно увеличивалась длительность анализа, что способствовало сильному разбавлению образцов подвижной фазой. Эти недостатки, а также отсутствие эффективной аппаратуры препятствовали распространению метода. В последнее время в этой области достигнуты значительные успехи, и метод колоночной распределительной хроматографии стал применяться как стандартный при решении [c.68]

Рис. 40. Разделение смеси галогенидов натрия методом колоночной распределительной хроматографии [100] Рис. 40. <a href="/info/190748">Разделение смеси</a> <a href="/info/16680">галогенидов натрия</a> <a href="/info/380328">методом колоночной</a> распределительной хроматографии [100]
    Метод колоночной хроматографии с весовым окончанием. Дпя проведения анализа необходимы перегонный аппарат, термостат, колба емкостью 50 см , делительная воронка емкостью 250 см , колонка длиной 10 см и диаметром 1 см, бюкс, хлороформ, гексан, оксид алюминия для хроматографии, стекловата, сульфат натрия и серная кислота. [c.158]

    В пособии изложены физико-химические основы и практические методы хроматографического анализа. Рассмотрена классификация и даны основы распределительного, адсорбционного, молекулярно-ситового, ионообменного, осадочного, адсорбционно-комплексообразовательного и окислительно-восстановительного методов хроматографии. Приведены различные варианты использования этих методов — колоночный, капиллярный, на бумаге, в тонких слоях. Показаны возможности применения хроматографических методов в анализе неорганических и органических соединений, а также для решения задач исследовательского характера. [c.2]


    Для организаций и предприятий выполнен ряд работ с доведением до аттестации и выдачи свидетельств на методики определения нефтепродуктов методом колоночной- хроматографии с [c.138]

    В процессе синтеза фуллеренов обьино получается смесь различных фуллеренов С ) - 80%, Си - 15%, высшие фуллерены - 2% [I]. Существует проблема выделения индивидуальных фуллеренов из смеси. Поиск хороших сорбентов для разделения фуллеренов методом колоночной хроматографии остается актуальной задачей и на сегодняшний день. [c.134]

    ХРОМАТОГРАФИЯ — метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Хроматографические сорбционные, методы различаются по следующим. признакам по средам, в которых производится разделение (газовая, газожидкостная, жидкостная X.) по механизмам разделения (молекулярная, ионообменная, осадочная и распределительная X.) по технике проведения разделения (колоночная, капиллярная, бумажная и тонкослойная X.), Методами X. анализируют смеси неорганических соединеиий, концентрируют следы элементов. В химической т хнологии X. применяют для очистки и разделения различных веществ, близких по свойствам лантаноидов, актиноидов, аминокислот и др. [c.280]

    В лабораторной практике для разделения и очистки веществ широкое применение получили хроматографические методы колоночная хроматография, хроматография на бумаге или пластине, газожидкостная хроматография. [c.229]

    Тонкослойная хроматография (ТСХ) отличается простотой исполнения и быстротой проведения эксперимента, благодаря чему во многих областях вытеснила бумажную хроматографию и ряд методов колоночной хроматографии. В настоящее время ТСХ занимает одно из ведущих мест среди методов разделения органических и био-органических соединений. Продолжительность разделения при ТСХ составляет минуты, поэтому ТСХ часто применяют как экспресс-метод. [c.356]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    Многие методы хроматографии, описанные в предыдущих разделах, применяют в сочетании с методом ионного обмена. В случае одних методов это обусловлено принципом осуществления метода (колоночная хроматография), в случае других — общими принципами методов хроматографии и реакций ионного обмена (разд. 7.3.1.1, 7.3.1.2) [25, 26]. Для ионообменных процессов, осуществляемых в колонках, часто применяют название ионообменная хроматография. Как будет показано ниже, термин хроматография (разд. 7.3.1) применим не ко всем методам ионного обмена. Применение [c.379]

    Более перспективным методом концентрирования нефтепорфиринов представляется селективная экстракция их полярными растворителями. В качестве растворителей, используемых для экстракции, применяются этиловый спирт [597], ацетонитрил [816], пиридин [817], ДМФА [811]. Сравнительное исследование полноты извлечения металлопорфириновых комп. ексов этими растворителями [818] показало, что наиболее полное извлечение достигается при обработке нефти ДМФА. Полученный в результате экстракции концентрат требует дальнейшей очистки, для чего обычно используется метод колоночной хроматографии и препаративной ТСХ на окиси алюминия [802, 819]. [c.144]

Рис. 41. Разделение смеси углеводородов методом колоночной распределительной хроматографии без носителя (по Г. Л. Старобинцу [106]) Рис. 41. <a href="/info/190748">Разделение смеси</a> <a href="/info/54236">углеводородов методом</a> <a href="/info/988702">колоночной распределительной хроматографии</a> без носителя (по Г. Л. Старобинцу [106])

    В аналогичной работе, посвященной сходной проблеме анализа, Хьюз и сотр. (1961) описали газохроматографический анализ продуктов сгорания без предварительного разделения смеси методом колоночной хроматографии при применении трех неподвижных фаз с различными свойствами в одном трехступенчатом приборе. Авторы сначала осуществляли предварительное разделение смеси на первой колонке с глицерином в качестве селективно действующей неподвижной фазы, так что продукты окисления большей частью выходили из колонки позднее углеводородов, а содержащаяся в пробе вода поглощалась глицерином. Вторая колонка с полиэтиленгликолем — полярной и сильно селективной неподвижной фазой — позволяла полностью отделять все углеводороды вплоть до н-гептана от окисленных составных частей. На третьей колонке анализировали только продукты окисления с применением неполярного силиконового масла в качестве неподвижной фазы. Таким образом удалось избежать наложения соединений обоих классов веществ. [c.228]

    Обычно при использовании метода колоночной осадочной хроматографии после пропускания через колонку чистого растворителя получают четко разделенные зоны, каждая из которых содержит только один компонент (в том случае, когда растворимости осадков различаются не менее чем в три раза). Метод отличаете хорошей воспроизводимостью результатов. [c.282]

    В НИИнефтеотдаче группой авторов разработана методика определения химической стабильности НПАВ ОП-7, ОП-10 и АФд-12. С ее помощью можно определить качественно и даже количественно наличие не только молекул ПАВ, но и продуктов их деструкции. Контроль за химической стабильностью НПАВ осуществляется методом тонкослойной хроматографии. Сравнение хроматограмм исходного Неонола АФд-12 и продуктов деструкции, полученных в результате эксперимента, позволяет качественно оценить процесс химической деструкции для условий конкретного месторождения. Появление на хроматограмме зон, отличных от зоны исходного ПАВ, свидетельствует о нестабильности последнего исчезновение зоны, характерной для исходного ПАВ,— о химическом превращении всего ПАВ. Продукты химической деструкции и исходный НПАВ выделяли методом колоночной хроматографии. Для количественного определения Неонола и продуктов деструкции использовали растворители, имеющие различную элюирующую способность. [c.99]

Таблица 5.1-1. Классификация методов колоночной хроматографии по кфироде подвижной и неподвижной фаз Таблица 5.1-1. <a href="/info/1610155">Классификация методов колоночной хроматографии</a> по кфироде подвижной и неподвижной фаз
    Для фракционирования пептидов используют различные методы колоночной хроматографии и ТСХ. Ранее мы уже знакомились с разделением пептидов гель-фильтрацией и обратнофазовой гидрофобной хроматографией. Нередко, если пептидов много, хроматографические методы следуют один за другим. Например, сначала пептиды разделяют на группы по размерам гель-фильтрацией, а затем следует ХОФ или ионообменная хроматография. [c.299]

    Для объективной оценки эффективности применения НПАВ в процессах повышения нефтеотдачи пластов был разработан метод определения химической стабильности НПАВ типа ОП-7, ОП-10 и АФ9-12 в условиях, приближенных к пластовым [32]. Метод позволяет судить о количественном и качественном присутствии НПАВ и продуктов их деструкции. Лабораторные испытания НПАВ на химическую стабильность проводились в присутствии пластовой воды и породы продуктивного пласта в герметических сосудах -автоклавах - в термобарических условиях конкретного месторождения при постоянном, контроле за температурой и давлением. Контроль за химической стабильностью НПАВ осуществлялся методом тонкослойной хроматографии. Сравнение хроматограмм исходного неонола и продуктов его деструкции, полученных в результате эксперимента, позволяет оценить процесс химической деструкции для условий конкретного месторождения. Появление на хроматограмме зон, отличных от исходного ПАВ, свидетельствует о возникновении продуктов деструкции НПАВ, а исчезновение зоны, характерной для исходной НПАВ - о полной химической деструкции последнего. Продукты химической деструкции и исходный НПАВ выделяли методом колоночной хроматографии с использованием растворителей, имеющих различную элюирующую способность, что позволило количественно разделить реакционную массу на фракции, содержащие отдельные продукты деструкции и исходный неонол. Выделенные индивидуальные продукты химической деструкции НПАВ идентифицировались методами ИК-, ЯМР-Н - и С - спектроскопии и элементного анализа. Степень химической деструкции рассчитывали по формуле  [c.19]

    Наиболее часто применяют методы колоночной ад-сорбционно-элюционной хроматографии и хроматографии в тонком слое. [c.46]

    Современная высокоэффективная жидкостная хроматография. ВЭЖХ (жидкостная хроматография высокого давления, скоростная жидкостная хроматография) начала развиваться в начале 70-х годов. Разработка нового метода обусловливалась, во-первых, необходимостью анализа высококипящих (>400 °С) или неустойчивых соединений, которые не разделяются методом газовой хроматографии, во-вторых, необходимостью увеличить скорость разделения и повысить эффективность метода колоночной жидкостной хроматографии. Для этого применили колонки с малым внутренним диаметром (2—6 мм) для ускорения массообмена уменьшили диаметр частпц сорбента (5— 50 мкм), что, в свою очередь, привело к необходимости увеличить давление на входе колонки до 0,5—40 МПа. Выпускаемые промышленностью жидкостные хроматографы снабжены высокочувствительными детекторами, позволяюш,ими определять до 10 —10" ° г вещества. Достаточно высокая скорость анализа, низкий предел обнаружения, высокая эффективность колонки, возможность определять любые вещества (кроме газов) привели к быстрому развитию ВЭЖХ. [c.203]

    Основные трудности в анализе следовых количеств органических суперэкотоксикантов связаны с тем, что для большинства соединений практическл отсутствуют типовые схемы, ана.по1 ичные схемам разделения и концентрирования, применяемым в анализе следовых количеств неорганических соединений В лучшем случае можно применять типовые схемы их разделения на фуппы. Классическим примером может служить схема разделения ХОС методом колоночной хроматографии на силикагеле [16-18 Однако добиться полного фуппового разделения, как правило, не удастся Полнота разделения зависит от характеристик сорбентов, способов модификации поверхности, условий ее активирования и т.д. [c.154]

    Кислоты этерифицируют диазометаном и анализируют смесь метиловых эфиров методом газожидкостной хроматографии. Для анализа кислот мол<ет быть исиользовап также метод колоночной хроматографии. Карбонильные соединения анализируют методом ГЖХ или переводят их в гидразоиы, которые затем идентифицируют методом тонкослойной хроматографии. Определение спиртов также можно проводить методом ГЖХ. [c.96]

    Колоночная хроматография является макрометодом. Применение зто-го метода для проведения микро- и полумикроопределений связано с использованием чувствительных детекторов, имеющихся лишь для некоторых веществ, действие которых основано, например, на измерении радиоактивности. За последние два десятилетия колоночная хроматография потеряла прежнее значение. В области аналитической химии ее вытеснили такие методы, как бумажная и тонкослойная хроматография. Однако колоночную хроматографию можно применять в области препаративной химии. Эта тенденция развития не характерна для ионообменной и гель-хроматографии. [c.354]

    Метод колоночной хроматографии является более длительным по сравнению с другими хроматографическими методами, но обладает большей производительностью. Его можно применять для качественного обнаружения лишь окрашенных веществ, или веществ поглощающих УФ-излучение. В иных случаях нужно иметь детекторы или цветнь е реагенты. Однако> метод более пригоден для проведения количественных определений, так как использование проточных нагревателей и сборников фракций позволяет применять менее чувствительные методы определения. [c.354]

    В пособии изложены основные принципы. хроматографического анализа в применении к исследованию многокомпонентных растворов неорганических ве-ш,еств, теоретическое обоснование каждого метода, рассмотрены возможности того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообразовательная, окислительно-восстановительная хроматография в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, какие могут возникнуть в работе химика-аналитика как в чисто прикладном аспекте, так и в процессе научного эксперимента. Большое внимание в настоящем учебном руководстве уделено ионообменной хроматографии, ионообменни-кам и рассмотрению закономерностей статики и динамики ионообменных процессов, а также использованию ионитов, особенно органических, в аналитической химии. [c.2]

    Теория, разработанная для колоночной распределительной хроматографии [117], может полностью быть применена к хроматографии на бумаге. В конечном итоге продвижение зоны каждого вещества при их разделении методом колоночной, бумажной и тонкослойной [118 раслределительной хроматографии определяется индивидуальными значениями относительных подвижностей — величинами Rf (формула (111.8) на стр. 168) или R (формула (III.10) на стр. 169). [c.174]

    На колонках с силиконированным силикагелем С. Се-керский и Б. Котлинская [104] методом колоночной распределительной хроматографии разделили цирконий и ниобий, а потом редкоземельные элементы и кальций — скандий органической фазой в этих опытах является трибутилфосфат. [c.176]

    ЛО, выигрыш во времени, связанный с более высокой эффективностью разделения капиллярной газовой хроматографии, не настолько велик, чтобы отдавать ей нредпочтение в сравнении с более грубым методом колоночной хроматографии. К тому же капиллярная хроматография открывает меньшие возможности для идентификации. Таким образом, капиллярные колонки не могут полностью заменить наполненные колонки, а лишь дополняют их. [c.22]

    Очистка препарата тяжелого меромиозина с помощью ионообменной хроматографии. Для очистки фермента можно также воспользоваться методом колоночной хроматографии. Для этого супернатант после осаждения миозина и легкого меромиозина (15—30 мл) наносят на колонку (2x11 см) с ДЭАЭ-целлюлозой (ДЭАЭ-52, ватман), уравновешенную 50 мМ трис-НС1 буфером pH 7,9. После нанесения белка колонку промывают двумя объемами того же буфера. Белок элюируют линейным градиентом КС1 от О до 0,5 М (2x250 мл). [c.395]

    Углеводородную фракцию из этой смеси можно без труда выделить методом колоночной хроматографии. Однако разделение углеводородной части на одной колонке невозможно. По данным Херна и др. (1959), на относительно длинной колонке можно почти полностью разделить только компоненты Сг — С5, а при соответствующем изменении температуры анализа — также фракции С5 — С7 или Се — Са посредством трех отдельных анализов. [c.227]

    В этой главе мы познакомимся с конструкциями колонок и аппаратурой как для жидкостной хроматографии прп низком давлении (до 5 атм), так и для ЖХВД, а также с некоторыми техническими приемами, общими для всех методов колоночной хроматографии, разбору которых посвящены следующие пять глав. Своеобразная техниками аппаратура для ТСХ описаны в последней главе. [c.65]

    В заключение отметим вариант двумерного фракционирования нентидов комбинацией колоночной (в данном случае — ионообменной) хроматографии и ТСХ фракций с колонки на пластинках силикагеля [Aromatorio et al., 1980]. Это — частный пример из широкой области использования ТСХ как дополнительного инструмента для анализа результатов фракционирования пептидов различными рассмотренными ранее методами колоночной хроматографии, в том числе и ЖХВД. [c.490]

    Наиболее эффективным и широко применяемым методом фракционирования сложных смесей липидов является хроматография. Главную роль при аналитическом фракционировании играет адсорбционная хроматография в тонком слое сорбента. Этот метод также применяется в препаративных целях, когда разделению подвергается небольшое количество липидов (50—300 мг). Если масса липидов превышает 300 мг, используют колоночную хроматографию, хотя по разделяющей способности и времени разделения этот метод часто уступает тонкослойной и газовой хроматографии. Однократного хроматографирования обычно бывает недостаточно для выделения индивидуальных веществ, в связи с этим полученные фракции подвергают препаративной тонкослойной хроматографии или колоночной хроматографии другого типа. При колоночрюй хроматографии липидов используют не только принцип адсорбции, но и принцип распределения между двумя несмеши-вающимися жидкостями, гель-фильтрации, ионного обмена. [c.69]

    При разделении гликоалкалоидов методом колоночной хроматографии в качестве сорбента применяют нейтральный оксид алюминия (II) и (III) степени активности по Брокману, а элюирование проводят смесью бензола с хлора юрмом. [c.165]

    Наиболее трудоемким процессом является разделение компонентов, так как ввиду малых структурных различий такие свойства полиэдрических кластеров углерода, как растворимость и адсорбируемость, оказываются очень близкими. Разделение удается провести Методами колоночной и жйдкосткой хроматографии, требующими большого количества растворителей и времени . До недавнего времени умели в чистом вйде выделять толЬко Сео и Сто, позже появилось сообщение о выделении в достаточно чистом виде некоторых высших фуллеренов. В настоящее время в эти процессы внесены важные технические усовершенствования, которые значительно ускоряют разделение, повышают выход чистых продуктов и сокращают расход растворителей . Основным методом идентификации, по-прежнему, остается масс-спектроскопия, хотя при этом, возможно, что Сто под электронным ударом до некоторой степени фрагментируется, давая Сбо- [c.118]

    Русский ботаник Михаил Цвет предложил метод колоночной хроматографии в 1903 году. Используя колонку, содержащую мелко размолотый карбонат кальция, он смог разделить экстракты пигментов из листьев, такие, как хлорофиллы, а также ксантофилл н спириллоксантин. При этом он наблюдал внутри колонкн цветнь[е зоны, что побудило его предложить термин хроматография (от греческих слов, означающих цвет и пишу ). [c.230]

    Классифи1сация методов колоночной хроматографии по природе используемых подвижной и неподвижной фаз предстгшлета в табл. 5.1-1. Два основных механизма хроматографического разделения—это распределение н адсорбция. Адсорбционная хроматография основана на непосредственном взаимодействии разделяемого вещества с поверхностью неподвижной фазы, иапример, в ГТХ или ЖТХ. Распределительная хроматография связана с ваишчием иммобилизованной жидкой неподвижной фазы (ГЖХ, ЖЖХ). [c.231]

    ДЛЯ ввода инертного газа и мембраной в 15 мл безводного ТГФ (в атмосфере азота) растворяют 0,84 мл (6,00 ммоль) сухого диизопропиламина и раствор охлаждают до 0°С. После этого шприцем добавляют 3,44 мл (5,50 ммоль) 1,6 М раствора н-бутиллития в гексане, смесь перемешивают 20 мин при О °С, охлаждают смесью ацетон-сухой лед до -78°С и шприцем медленно вводят 1,00 г (5,00 ммоль) (48)-3-бути-рил-4-изопропилоксазолидинона-2. Реакционную смесь перемешивают 60 мин при — 78 °С и медленно вводят при помоши шприца охлажденный раствор (см. разд. 1.4) 0,75 мл (10,0 ммоль, с1= 1,577) свежеперегнанного пропаргилбромида в 1 мл ТГФ. Смесь перемешивают в течение 8 ч при — 78 °С и затем в течение 8 ч нагревают до комн. температуры. Смесь обрабатывают, вливая ее в насышенный водный раствор КН4С1 (30 мл), разделяют фазы и водную фазу экстрагируют эфиром (3 х 20 мл). Объединенные органические фазы высушивают над М 804 и растворитель отгоняют в вакууме. ГХ-анализ неочишенного продукта (капиллярная колонка 8Е-30 длиной 50 м, давление N2 1 атм, начальная температура 150 С/15 мин, температурная программа 5 "С/мин, конечная температура 270 °С ПИД) дает соотношение диастереомеров 120 1 (время удерживания = 18,23 мин, 19,11 мин). Продукт очишают методом колоночной хроматографии на 50 г силикагеля (размер зерен 0,063-0,200 мм) при элюировании смесью эфир-петролейный эфир (1 3), что дает 0,83 г (70%) продукта алкилирования в виде прозрачного желтоватого масла. [c.489]

    В результате реакции (8.3) образуется комплекс 18С6 с тозилатом калия Это координационное соединение устойчиво по отношению к пиролизу, поэтому лиганд в свободном состоянии выделяли методом колоночной хроматографии или же перегонкой продуктов реакции в глубоком вакууме [c.149]

    L379 (А1к = СНз) (уравнение (8.49)) [516]. 4,25 г DB18 6 (см методику 10) растворяют в 43 г ПФК при нагревании на кипящей водяной бане, прибавляют 6,75 мл уксусной кислоты и продолжают нагревать 30 мин при перемешивании. Реакционную смесь разлагают водой, выпавшие кристаллы отфильтровывают, отмывают водой до нейтральной реакции, сушат, кристаллизуют из диоксана и очищают методом колоночной хроматографии. Получают 4,4 г (85 %) смеси цис-и транс-изомеров диацетилдибензо-18-краун-б (т. пл. 194—201 С). Дробной кристаллизацией из абсолютного спирта смесь разделяют на изомеры с т. пл. 197—199 °С (транс-изомер) и 213—215 °С (г<ис-изомер). ИК 3080, 1690, 1600, 1520, 1280, 880, 810 см . ПМР б 7,4 (с.), 6,72 (д), 4,2-3,8 (м ), 2,44 (с ) м. д [c.197]


Смотреть страницы где упоминается термин Хроматография, методы колоночная: [c.152]    [c.92]    [c.12]    [c.114]    [c.326]    [c.490]    [c.164]   
Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.18 , c.21 ]

Установление структуры органических соединений физическими и химическими методами Книга1 (1967) -- [ c.18 , c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура и методы измерения в жидкостной колоночной хроматографии

Другие методы колоночной хроматографии

Качественное определение галогенидов методом колоночной осадочной хроматографии

Качественный анализ смеси катионов Sba и Sn2 методом колоночной осадочной хроматографии

Классификация методов колоночной хроматографии

Колоночная хроматография. Инструментальные методы детектирования. Последовательность операций Хроматография на бумаге

Концентрирование микроколичеств меди, хрома и цинка методом экстракционной колоночной хроматографии

Лугинин, Н. И. Слесарь, И. А. Церковницкая. Разделение ионов ванадия (IV) и (V) и железа (III) методом колоночной распределительной хроматографии

Методы детектирования при колоночной хроматографии

Определение нуклеотидного состава РНК методом колоночной хроматографии

Очистка воды методом ионообменной колоночной хроматографии

Подбор условий хроматографического разделения в колоночной жидкостной хроматографии методами тонкослойной хроматографии

Развитие методов непрерывных измерений в колоночной хроматографии

Разделение ионов I- и Вг методом колоночной хроматографии

Сводная таблица экспериментальных данных, полученных методом колоночной экстракционной хроматографии

Стерины выделение методом колоночной хроматографии

Сухой метод в колоночной хроматографии

Хроматография колоночная

Хроматография методы

Элюирование проявление сухой метод в колоночной хроматографии



© 2024 chem21.info Реклама на сайте