Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан при получении олефинов

    Недавно появился обзор по синтезу блоксонолимеров на катализаторах Циглера—Натта [100], но имеется только несколько примеров специального использования этих блоксонолимеров для стабилизации полимерных дисперсий. Один из таких примеров — получение коллоидной дисперсии полипропилена с использованием титан-алюминиевого катализатора [106] (см. стр. 240). Вначале четыреххлористый титан восстанавливают алкилами алюминия при этом получают активный катализатор, содержащий треххлористый титан. Затем готовят коллоидную дисперсию этого катализатора, вначале суспендируя его в углеводородном разбавителе, прибавляя диалкилалюминийгалогенид, а затем а-олефин, содержащий, но крайней мере, 6 атомов углерода, обычно октен-1 или гексадецен-1. Полученная очень тонкая дисперсия частиц катализатора, вероятно, стабилизирована присоединенными к их поверхности цепями поли(а-олефина). Эту дисперсию катализатора используют далее для полимеризации пропилена, приводящей к субмикронной дисперсии в основном кристаллического полимера. [c.123]


    Аналогичный ряд получен и для гидрирования циклогексена. Незначительное каталитическое действие ацетилацетона хрома в сравнении с ацетилацетонатом кобальта наблюдалось также при гидрировании циклогексена [164]. Низкая активность комплекса, содержащего титан, скорее всего связана с возможной дезактивацией катализатора. При гидрировании олефинов в присутствии растворимого [c.74]

    Реакция между гидридом щелочного металла (гидрид натрия или лития) и соединениями, содержащими активную метиленовую группу, например антрацен, трифенилметан, акридин, флуорен и инден, приводит к получению металлоорганических соединений, способных служить в качестве сокатализаторов. Эти сокатализаторы применяют в сочетании с галогенидами металлов IV—VI групп, например с четыреххлористым титаном, и получают катализаторы Циглера, способные полимеризовать этилен и другие а-олефины с образованием высокомолекулярных продуктов [48]. [c.112]

    Для получения компонентов катализатора элементарные металлы — алюминий [304—308], магний [304], марганец [309] и титан [310, 311] обрабатывают катализаторами Фриделя—Крафтса, в том числе галогенидами алюминия, железа и титана. После обработки металлического алюминия хлористым алюминием или хлористым железом к реакционной смеси добавляют галогенид титана и получают эффективный катализатор для полимеризации олефинов [304]. Продукты реакции, образующиеся при обработке элементарных металлов галогенидами титана или ванадия в присутствии или в отсутствие галогенида алюминия, могут служить эффективными катализаторами полимеризации рог se. [c.115]

    Использование свободных металлов в качестве восстановительных агентов для получения соединений титана и циркония рекомендуют при приготовлении ряда каталитических систем, причем компоненты нагревают при повышенных температурах (например, 200—300°) с целью получения активных продуктов, т. е. продуктов, способных, по всей вероятности, образовывать комплексы с олефинами и инициировать полимеризацию при обычной температуре. Так, галогениды или алкоголяты титана и циркония нагревают с металлическими натрием, алюминием и даже титаном [215] п получают катализаторы для полимеризации этилена. При нагревании металлического титана с хлористым алюминием также образуется эффективный катализатор. Добавление кислорода или органических и неорганических перекисей дает возможность получить активный катализатор из титана и галогенида алю.миния в более мягких условиях [238]. Кроме этилена в присутствии каталитической системы, состоящей из галогенидов алюминия и титана, полимеризуются так ке пропилен, бутадиен и изопрен [239]. [c.114]


    Исключительный интерес представляют кристаллические полимеры пропилена, полученные впервые Натта [30]. Полимеризация пропилена проводилась в присутствии гетерогенных катализаторов, по действию, повидимому, аналогичных катализаторам Циглера. По опубликованным данным [31], в зависимости от структуры катализатора продукт полимеризации содержит различное количество аморфных и кристаллических полимеров. Указывается, что полипропилен имеет т. пл. 148—160°. Применяя в качестве катализатора триметилалюминий и четыреххлористый титан, Натта [32] осуществил полимеризацию а-олефинов с 5—7 атомами углерода с образованием кристаллических и аморфных полимеров. [c.15]

    Проведенные технологические разработки получения высших алюминийалкилов из триэтилалюминия и этилена позволили американской фирме ono o создать крупнотоннажное непрерывное их производство. Процесс состоит из следующих основных стадий [61] активирование алюминия, содержащего титан получение диэтилалюминийгидрида (120°С, 8,5 МПа) получение триэтилалюминия (100—150°С, 2,5 МПа) отделение триэтилалюминия от непрореагировавшего алюминия получение высших алюминийалкилов (120°С, 10 МПа). Синтез высших алюминийалкилов осуществляется в аппарате змеевикового типа, в который в 10—15 местах по длине впрыскивается этилен. Помимо высших алюминийалкилов в качестве побочных продуктов образуются низкомолекулярные олефины и полиэтилен. Последний осаждается на стенках реактора, его периодически удаляют горячим растворителем. [c.169]

    На примере н-гептена показано [890], что треххлористый титан, полученный восстановлением Ti U под действием радиационного излучения, в отсутствие каких бы то ни было сокатализаторов инициирует полимеризацию этого олефина в стереоблочный полимер. Такие же полимеры образуются и на системе Ti U— А1(ызо-С4Н9)з [885]. [c.234]

    В работах 3- показано, что замена АОС в системах на основе Т112С12 и Т1(ОВи)4 на диалкилмагний приводит к заметному изменению стереоспецифичности действия катализаторов и снижению их активности при полимеризации бутадиена. Последнее связано с уменьшением реакционной способности АЦ. В то же время известны многочисленные примеры использования производных магния для получения высокоактивных нанесенных катализаторов полимеризации олефинов 5-17 Некоторые приемы повышения активности каталитических систем, в частности, титановых, для полимеризации олефинов, успешно используются и при полимеризации диенов. В работах изучалась транс-полтлше-ризация бутадиена и изопрена под влиянием титан-магниевых катализаторов (на основе Т1С14), нанесенных на силикагель, в сочетании с А1(г-Ви)з. [c.144]

    Четыреххлористый титан применяется также в качестве катализатора при полимеризации этилена и при алкилировании ароматических углеводородов [142, 143]. Полученный восстановлением TI I4 треххлористый титан применяется в качестве катализатора при полимеризации олефинов, в частности в производстве полипропилена [143]. [c.544]

    Реакция протекает с выделением тепла. Все полученные алкил-алюминийсилиламиды представляют собой высококппящие, прозрачные, растворимые в парафиновых углеводородах жидкости [116—118]. Некоторые алкилалюминийсилилампды в сочетании с четыреххлористым титаном явились активными катализаторами в процессе полимеризации олефинов [119—121]. [c.23]

    В качестве сокатализаторов для полимеризации этилена были использованы алкилы и арилы щелочных металлов—лития, натрия и калия. Эти соединения употребляют в сочетании с соединениями переходных металлов IV-VI групп [21,39,45, 46, 102, 103, 116, 131-133, 154, 207, 223, 277—279, 282], например с четыреххлористым титаном и четыреххлористым ванадием, а также и с треххлористым железом [34]. Смесь алкильных и арильных соединений щелочных металлов — лития, натрия и калия — и соединений металлов IV—VI групп может быть катализатором полимеризации олефинов с образованием полимеров, содержащих до десяти углеродных атомов [46]. Однако патент [47], специально посвященный получению полипропилена, также предусматривает использование смеси четыреххлористого титана и металлоорганических соединений натрия или лития, содержащих от трех до пяти углеродных атомов. В этом же патенте указывается, что соответствующие органические производные калия не годятся для полимеризации пропилена. Интересно, что в предыдущем патенте содержится только один пример использования соединения калия (бензилкалия) для полимеризации этилена, в то время как алкилы лития используются для полимеризации этилена и пропилена, а алкилы натрия — для полимеризации этилена, смеси этилена с пропиленом, бутилена, стирола и изопрена. Полимеризация этилена на катализаторе Циглера, полученном при взаимодействии амилнатрия и четыреххлористого титана, происходит в десять раз быстрее, чем на катализаторе, содержащем фенилнатрий, и в семь раз быстрее, чем на катализаторе, содержащем бензилкалий [46]. [c.111]


    Ароматические виниловые мономеры, например замещенные стиролы, удалось заполнмеризовать с получением высокомолекулярных стереорегулярных полимеров, используя катализаторы как из треххлористого титана (фиолетовой формы), так и четыреххлористого титана и алюминий-органических соединений [326, 336, 337]. В отличие от полимеризации алифатических а-олефинов, при стереоспецифической полимеризации ароматических виниловых мономеров высокой эффективностью обладают и трех- и четыреххлористый титан. [c.144]

    Катализаторы для получения изотактических полимеров из разветвленных олефинов, таких, как З-метилбутен-1, 4-метилпентен-1, 4-метилгексен-1 и 5-метилгексен-1, в общем случае получают из галогенидов металлов IV—VI групп и алкилов алюминия. Лучшими катализаторами являются треххлористый титан и треххлористый ванадий. Б качестве растворителя применяют гептан, с тем чтобы твердый катализатор Циглера оставался в нерастворенном состоянии [27]. [c.146]

    В патенте, выданном в 1953 г. Фишеру, очевидно, нредшествовавшем работам Циглера, поскольку на нем указала дата 1943 г., онисывается метод получения твердых полимеров из этилена и этиленсодержащих газов путем взаимодействия олефина с хлористым алюминием и четыреххлористым титаном в присутствии порошка алюминия — акцептора хлористого водорода. Указанную реакцию следует вести при температуре 130—180° и давлении 30—80 ат [49]. Очевидно, что данная система содержит все необходимые компоненты для получения катализатора Циглера in situ, и несомненно, что при повышенной температуре и под давлением этилен реагирует с порошкообразным алюминием с образованием триэтилалюминия. Вслед за этим алкил алюминия обычным путем взаимодействует с четыреххлористым титаном. Рекомендуемое соотношение Ti/Al составляет 3 1, хотя его можно менять от 1 1 до 10 1. [c.174]

    При полимеризации пропилена [22] и этилена [214] в качестве катализатора можно использовать сплав магния с алюминием MgjAlj в сочетании с четыреххлористым титаном [22]. Сплав алюминия с титаном в сочетании с галоидалкилами и галоидалкиларилами также можно использовать как катализатор для полимеризации этилена и других а-олефинов [50]. Этот сплав может содержать от 1,5 до 10 частей алюминия на одну часть титана, хотя наилучшие результаты получаются при соотношении алюминия к титану, равном 3 1. Тонко измельченный сплав обрабатывают, например, хлористым этилом при температуре около 50°. Непрореагировавший галоидалкил удаляют в вакууме, а катализатор суспендируют в инертном растворителе типа гептана и декантацией отделяют от непрореагировавшего сплава. Отделенную суспензию можно использовать как катализатор для получения высокомолекулярных и высококристаллических полимеров этилена и высших а-олефинов. Интересно отметить, что в данном случае в процессе приготовления катализатора не происходит восстановления соединений титана высшей валентности, как обычно, а, наоборот, металлический титан переходит в высшее валентное состояние. [c.176]

    Этот процесс, называемый реакцией вытеснения, препятствует неограниченному росту алкильных цепей образуются олефины с низкой степенью полимеризации. Таким образом, для получения полиэтилена с высоким молекулярным весом (от 10 000 до 3 000 000, а практически от 50 000 до 100 000) сам триэтилалюминий не пригоден. Для этого необходимо вводить в качестве сокатализатора какую-нибудь соль переходного металла, обладающего свойствами кислоты Льюиса (целесообразнее всего четыреххлористый титан). Реакция полимеризации проводится очень просто. В раствор смещанного катализатора в минеральном масле вводится этилен, и при этом сразу же происходит осаждение полиэтилена. Этот процесс полимеризации этилена при низком давлении был открыт Циглером ( Мюльгеймовский способ получения полиэтилена при нормальном давлении ) и является важным практическим результатом исследований в области комплексных гидридов [3123, 3125, 3127]. [c.392]

    Описана полимеризация сс-олефинов в тетрахлориде кремния в качестве растворителя для галогенидов титана, циркония и т. д., используемых в сочетании с алкильным соединением цинка в другой системе для получения эластичных и кристаллических полимеров применяли смесь диэтилцинка с четыреххлористым титаном и алюмомагниевыми сплавами [c.57]

    Хотя алюминийалкилы были открыты еще в 1865 г., широкий интерес к ним появился лишь за последние 12—15 лет в связи с их использованием в качестве катализаторов полимеризации. Развившаяся благодаря работам Циглера и Чатта, эта область применения алюминийалкилов является наиболее важной. Большое число патентов (в 1958—1960 гг. выдано около 700) посвящено получению и использованию этих соединений как катализаторов полимеризации олефинов. В качестве катализаторов были предложены также различные алкильные, арильные, циклопентадиенильные и другие органические соединения металлов, однако их использование незначительно по сравнению с использованием системы алюми-нийалкил — четыреххлористый титан. Опубликовано много обзорных статей, которые дают исчерпывающее представление об успехах, достигнутых в этом направлении . В связи с этим лишь кратко перечислим области применения соединений алюминия. [c.71]

    Продукты СВС представляют собой новый тип полупроводниковых катализаторов, обладающих высокой хемо- и термостойкостью. Метод СВС [373] позволяет осуществить очень точное варьирование состава получаемого катализатора, обеспечивая получение требуемого соотношения металла и неметалла. Можно полагать, что путем изменения этого соотношения в различных катализаторах удастся достичь оптимальной каталитической активности гетерогенного контакта. Однако подобная оптимизация каталитического процесса за счет состава гетерогенных катализаторов требует получения большого массива экспериментальных кинетических данных. К сожалению, до настоящего времени таких систематических исследований как в процессах жидкофазного окисления олефиновых соединений, так и в реакциях индуцированного окисления (например, при сопряженном окислении олефинов с альдегидами) не проведено. Более подробно действие продукта СВС изучено в работах [374, 375], где проводилось жидкофазное окисление стирола в присутствии карбида и борида титана. Применение этих катализаторов приводит к значительному увеличению образования оксида стирола за счет уменьшения количества бензальдегида. На поверхности катализатора присутствует оксидный титан, спектр которого отличается от спектра диоксида Т10г, а бор находится в трех состояниях, отвечающих соединениям Т1В2, В2О3 и ВОл (л <1,6). Исследование изменения состава катализатора по ходу процесса методом ЭСХА показало, что количество образовавшегося оксида стирола пропорциональ- [c.155]


Смотреть страницы где упоминается термин Титан при получении олефинов: [c.108]    [c.62]    [c.91]    [c.100]    [c.131]    [c.336]    [c.498]    [c.108]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Титан получение



© 2025 chem21.info Реклама на сайте