Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометры импульсов

    В магнитном время-пролетном масс-спектрометре ионы движутся в постоянном магнитном поле по круговой траектории. В этом спектрометре ионный пучок проходит импульсами с частотой 300 кгц [10]. Ускоряющее электрическое поле падает до нуля раньше, чем ионы (кроме самых легких) выйдут из источника, так что все тяжелые ионы получают равные импульсы, и поэтому в магнитном поле движутся по одной и той же траектории. Так как ионы описывают полную окружность, они фокусируются, давая ионно-оптическое изображение своего пространственного распределения в ионном источнике. Другой тип масс-спектрометра по времени пролета представляет собой прибор, в котором ионы двигаются от источника к коллектору по линейной траектории при отсутствии магнитного поля. В приборе измеряется время дрейфа ионов с известной энергией по длинной ограниченной трубке. Интервал времени между поступлением масс на коллектор [c.7]


    Энергии различных видов излучения могут существенно различаться, причем каждый нуклид характеризуется определенной энергией. Нуклид, испускающий а- и р-частицы, можно обнаружить, применяя стандартные поглотители, например листы фольги различных металлов с известной толщиной. Толщина с.аоя фольги, необходимая для снижения активности излучения вдвое, может служить мерой энергии излучения нуклида. З ту величину можно определить по градуировочному графику. Можно также применять описанные выше счетчики, сортирующие импульсы излучения в соответствии с их энергией. Самописцы при этом регистрируют число импульсов в минуту как функцию энергии частиц. Счетчики можно также использовать как спектрометры. Созданы также нейтронные спектрометры, которые позволяют определять ряд элементов по измерению поглощения нейтронов. [c.387]

    I кВт, тогда как в стационарном спектрометре доли ватт) импульса электромагнитного поля порядка 10- ...1 Т. Контур датчика ЯМР, подводящий радиочастотное поле В., должен надежно работать в этих жестких условиях и быть чувствительным к слабым сигналам ССИ в промежутках между импульсами, поэтому его связь с генератором и приемником должна удовлетворять более [c.47]

    Для регистрации спектров двойного резонанса применяются как стационарные, так и импульсные методы. В фурье-спектрометрах выравнивание заселенностей достигается применением 90°-ного импульса, и получаемый эффект в изменении интенсивностей ничем не отличается от наблюдаемого на стационарных. В то же время 180°-ный импульс обращает спины В, т. е. меняет их поляризацию, а значит, обращает и заселенность соответствующих уровней. Это приводит к более кардинальному изменению интенсивности линий, соответствующих переходам А, т. е. значительно повышает чувствительность метода. [c.51]

    Аналогично тому как это делается в ЯМР фурье-спектроскопии, спектры ЯКР получают также, регистрируя кривую спада свободной индукции после наложения мощных радиочастотных импульсов прямоугольной формы. Реализуемый на спектрометрах метод импульсного квадрупольного спинового эха обеспечивает большой выигрыш в чувствительности и разрешении, которое в этом случае практически определяется естественной шириной линии и не зависит от аппаратурных факторов. [c.111]

    Спектр фотоэлектронов получают, сканируя или поле анализатора, или замедляющее поле. Регистрация может проводиться непрерывно или ступенчато (по точкам). Для улучшения отношения сигнала к шуму необходимо усреднение по многократным сканам или увеличение времени счета импульсов в каждой точке. Имеющиеся в современных спектрометрах микропроцессоры и мини-ЭВМ управляют работой системы и обеспечивают накопление сигналов, усреднение, сглаживание, разложение сложных контуров на отдельные компоненты, вычитание фона, дифференцирование, интегрирование и другую обработку спектров. [c.148]


    Некоторые конструкции рентгеновских микроанализаторов позволяют получать изображение распределения элементов на поверхности образца с помощью характеристических рентгеновских лучей. Для этого электронный зонд, падающий на образец, специальной электромагнитной системой отклоняется так, что пробегает по некоторой площади (метод сканирования). Время, затрачиваемое электронным зондом для пробега одного растра, равно 8 с, число строк — 400. Возможные увеличения 300, 600 , 1200 и 2400. Спектрометр прибора настраивается на характеристическую линию определенного элемента. Рентгеновские кванты, попадающие в спектрометр, преобразуются счетчиком в электрические импульсы, которые модулируют электронный луч телевизионной трубки. В результате каждому зарегистрированному кванту соответствует яркая точка на экране. Поскольку развертка электронного зонда синхронна с разверткой электронно-лучевой трубки, то светящиеся точки располагаются на экране в соответствии с характером распределения элементов на анализируемой площади. [c.153]

    Левая часть этого уравнения содержит выражение для лоренцовой линии (уравнение 34), правая — зависимость, описывающую интерферограмму. Здесь V означает частоту ВЧ-генератора, Го — частоту прецессии магнитных ядер, Т2 — время спин-спиновой релаксации, t — время от момента окончания ВЧ-импульса. Фактически Фурье-преобразование сигнала ССИ производится встроенной в спектрометр мини-ЭВМ с выдачей результата на график с помощью обычного самописца. Напомним, что лоренцова линия есть выражение для сигнала поглощения, которое получается из решения уравнений Блоха. Таким образом, зарегистрировав сигнал ССИ и произведя Фурье-преобразование этой кривой, можно получить спектр поглощения ЯМР. Более подробные сведения о Фурье-спектрометрах ЯМР приведены в параграфе 2.5. [c.37]

    Требования к частям б) и в) импульсного и стационарного приборов различны. Например, передатчик в импульсном методе должен генерировать импульсы мощностью несколько киловатт, чтобы создать в образце поле Ну с амплитудой 10 — 10 А/м. В то же время в стационарном ЯМР-спектрометре передатчик имеет мощность меньше 1 Вт, так как в стационарном эксперименте требуется поле Ну с амплитудой около 10 А/м (малые значения амплитуды радиочастотного поля Я, необходимы, чтобы избежать насыщения). Приемник для импульсного прибора должен выдерживать большие перегрузки по амплитуде и очень быстро (за 10 мкс и менее) восстанавливать свою чувствительность после них. В стационарных спектрометрах этой проблемы не существует.  [c.38]

    Для чего в Фурье-спектрометрах применяют короткие импульсы большой мощности Что значит 90°-импульс  [c.59]

    В атомно-абсорбционной спектрометрии для атомизации пробы используют пламя, электротермическую атомизацию, воздействие мощного лазерного импульса и др. Наиболее старым, но до сих пор, пожалуй, наиболее распространенным является способ атомизации анализируемой пробы в пламени. Пламя представляет собой простой, надежный, дешевый н экспрессный атомизатор для большого числа проб различного состава. Метрологические характеристики (достаточно низкие пределы обнаружения, хорошая воспроизводимость )езультатов) пламенного способа атомизации позволяет широко использовать атомно-абсорбционную спектрометрию для решения большого числа аналитических задач. [c.139]

    В импульсном ЯМР генерируют импульсы мощностью несколько киловатт, чтобы создать в образце поле Ну (порядка 10 — 4-10 Т). Передатчик спектрометра, работающего в стационарном режиме, обычно имеет мощность порядка 1 Вт. [c.56]

    В ФРГ запатентованы способ измерения состава угля в скважинах излучением импульсов нейтронов разной длительности и регистрацией 7-излучения в промежутках и устройство контроля материала, подаваемого насосом (щламы, пульпы), с для облучения и свинцовой камерой для материала после облучения и регистрации 7-излучения. В Японии запатентовано устройство для измерения состава с использованием нейтронов и гамма-спектрометром с фильтрами перед детекторами.  [c.39]

    Проделав те же вычисления для наблюдения углерода на спектрометре с частотой 500 МГц (частота углерода 125 МГц), где максимальная расстройка резонанса составит около 15 кГц, мы получим длительность л/2-нмпульса 0,3 мкс. Однако на практике при работе с жидкостями на спектрометрах высокого разрешения эта величина составляет чаще всего 15-20 мкс на Ш-мм датчике, что соответствует максимальному значению угла эффективного поля около 45°. Это служит основным камнем преткновения для проведения большого числа многоимпульсных экспериментов, и именно здесь ведутся активные конструкционные разработки, Частично решить эту проблему можно с помощью остроумной концепции составных импульсов, которой мы еще коснемся в гл. 7. [c.109]

    МОЖНО просто поменять фазы опорной частоты. Но здесь нужно быть очень осторожным, поскольку сама опорная частота вполне может служить источником разбалансировки каналов. Нам хотелось бы, не меняя аппаратурных режимов работы приемника, поменять местами выводы данных в области А и В (что представляет собой только программную компьютерную операцию) и в то же время сместить фазу сигналов иа 90". Мы уже видели в разд. 4,3.4, как эго можно сделать, просто сместив на 90° фазу импульса. Это позволит поменять местами сигналы поглощения и дисперсии именно так, как нам нужно. Внимательно посмотрев на рис. 4.24, вы заметите, что один из сигналов при этом еще и меняет знак значит, после оцифровки его нужно дополнительно умножить на —1. Теперь нужно только соответствующим образом обработать данные, что умеют делать управляющие программы всех спектрометров. В результате мы получим двухшаговый фазовый [c.123]


    Метод фокусировки по направлению использован в большом числе сконструированных приборов, включая и промышленные образцы для аналитического применения. Поэтому имеет смысл рассмотреть прибор Демпстера несколько более детально. Уравнение (2), записанное в форме Я = mvlHe, показывает, что все ионы, входящие в магнитное поле и обладающие одним и тем же зарядом и импульсом, будут двигаться по кривой с одинаковым радиусом независимо от массы, в то время как ионы с различными импульсами двигаются по кривым с разными радиусами. Отсюда ясно, что данная форма анализатора приводит к образованию спектра импульсов ионов, который также является масс-спектром, если все ионы, входящие в поле, обладают одинаковой энергией, так что каждой массе соответствует определенная скорость. Данный факт был установлен Астоном [80], который по этой причине возражал против использования Демистером термина шасс-спектрограф . Действительно, подобные приборы называют иногда спектрометры импульсов . Ввиду того что в них применена электрическая регистрация и они могут быть поэтому использованы для измерения относительной распространенности, их также иногда называют спектрометры распространенности . Если все изучаемые заряженные частицы обладают одной и той же массой, спектрометр с 180-градусным магнитным сектором может быть использован для изучения пределов энергий частиц, и установка становится спектрометром энергии [1412]. [c.20]

    Методом характеристических потерь энергии электронами (Ер=200 эВ) с угловым разрешением изучена пространственная дисперсия плазмонов в графите в интервале квазиимпульсов 0-ь 16 нм . Спектры ХПЭ получены в ФТИ им. А.Ф. Иоффе РАН. Все эксперименты выполнялись с помощью многоканального электронного спектрометра с угловым разрешением [1] с оригинальным дисперсионным энергоанализатором типа коническое зеркало [2]. Угловое разрешение прибора по полярному углу 0 и азимутальному углу <р было одинаковым (1.5 х1.5"). Значения полярньсх углов 0, определялось с точностью 0.5 . Угол падения первичного пучка электронов на образец 0=50°. Углы сбора неупруго рассеянных электронов составляли 15-55". Анализатор работал в режиме постоянного абсолютного энергетического разрешения ДЕ=0.6 эВ и был настроен на энергию пропускания 30 эВ. Измерения проведены на образцах высокоориентированного пирографита (НОРС). Определение энергии л- и о-плазмонов проведено с использованием формализма Крамерса-Кронига [3]. Величина переданного импульса (q - это квазиимпульс л-электронов) определена по следующей формуле = , [c.48]

    На совмещенную с фурье-спектрометром ЯМР электронно-вычислительную машину, являющуюся, по существу, его неотъемлемой составляющей частью, возглагаются функции управления спектрометром по заданной программе или в соответствии с командами, подаваемыми оператором. ЭВМ формирует импульсы, накапливает сигнал ССИ и преобразует его в спектр, хранит информацию в памяти и по команде выдает или в цифровом виде, или через цифроаналоговый преобразователь графически. Кроме того, ЭВМ может выполнять много других операций по обработке данных, улучшению качества спектра, упорядочению и систематизации информации. [c.47]

    В последние годы в практике все шире используется импульсная Фурье-спектроскопия (ЯМР на ядрах С). В ЯМР-спектрометрах с Фурье-преобразованием в приемнике детектируется не сигнал поглощения или дисперсии (что имеет место в стационарных спектрометрах без Фурье-преобразова-ния), а сигнал спада свободной индукции (ССИ), который генерируется путем воздействия на образец ВЧ-импульсов определенной частоты. Наблюдение поведения системы ядерных спинов проводится по окончании каждого импульса, т. е. после выключения высокочастотного поля (ВЧ). Сигнал, детектируемый в приемнике, называют сигналом свободной индукции. [c.35]

    Однако поместить в ограниченном объеме межполюсного зазора магнита, где наиболее однородный участок магнитного поля, такое огромное количество катушек генераторов и приемников, которые бы, к тому же, не взаимодействовали между собой, технически невозможно. Тем не менее идея, заложенная в таком подходе к решению проблемы повышения чувствительности ЯМР-спектрометра, реализуется в настоящее время в импульсных спектрометрах (Фурье-спектрометрах) ЯМР. В отличие от стационарных методов, когда образец испытывает непрерывное (стационарное) действие ВЧ-генератора в течение всего времени наблюдения спектра, в Фурье-спектрометрах применяются короткие вспышки, или импульсы, ВЧ-колеба-ний определенной частоть1 .Ааблюдение системы ядерных спинов производится по окончании импульса, т. е. после выключения ВЧ-генератора. [c.55]

    ИМПУЛЬСНЫЙ ФОТОЛИЗ, метод исследования быстрых хим. р-ций и их короткоживущих продуктов (время жизни от долей до 10" с), основанный на возбуждении молекул мощным световым импульсом. Сочетает возможность мгновенного (за время светового импульса) получения активных частиц с регистрацией их во времени. Возбуждение осуществляется светом импульсной лампы за Ю - — 10 с или лазерами за 10" — 10 с. Наиб, распростр. методы регистрации — спектрофотометрич. (осцил-лографич.) и спектрографический с помощью спектров поглощения в видимой и УФ областях. Спектрофотометрич. регистрация совместно с примен. приемов увеличения отношения сигнал/шум позволяет исследовать короткоживу-щие частицы с конц. до 10 моль/л. Для регистрации примен. также методы люминесценции, ЭПР, масс-спектрометрии и кондуктометрии. С помощью И. ф. изучены св-ва большого числа нестабильных своб. радикалов, ионов, ион-радикалов, триплетных состояний, эксимеров и эксиплексов исследуются механизмы фотохим. и фотобиол. процессов. В квантовой электронике И. ф. примен. для изучения роли триплетных состояний в процессах генерации, а также для исследования механизма фотодеструкции и нахождения путей фотостабилизации молекул активных сред в жидкостных лазерах. [c.218]

    Современный импульсный эксперимент ЯМР выполняется исключительно в режиме с фурье-преобразованием. Вопрос о том, почему это так, детально рассматривается в этой книге, но сам факт столь широкого использования метода Фурье заставляет лишний раз задуматься о природе экспериментов ЯМР. Несомненна польза от реализации этого метода. Особенно эффективные результаты могут быть получены при использованин преобразования в пространстве более чем одной переменной. Важно при этом понимать и те ограничения, которые характерны для цифровой обработки сигналов. Оцифровка сигналов и их преобразование с помощью компьютера часто ограничивают точность измерений частоты и интенсивности, а в отдельных случаях могут даже делать невозможной одновременную регистрацию сигналов. В целом это нетрудно понять, но вопрос носит несколько абстрактный характер для тех, кто только начинает знакомство с методом фурье-спектро-скопии ЯМР. Даже если вы не собираетесь сами садиться за спектрометр, то вам целесообразно хотя бы бегло ознакомиться с тем, как связаны между собой следующие параметры время регистрации и разрешение или интервал между импульсами, время релаксации и интенсивность сигнала. При использовании современного метода ЯМР много ошибок происходит из-за непонимания возникающих при этом ограничений. [c.8]

    Пульт спектрометра содержит генератор радиочастотных импульсов и приемник для регистрации сигналов ЯМР. Оба этих блока похожи на обычные радиоустройства. В частности, приемник весьма похож на приемный тракт в радио илн телевизоре. В современных спектрометрах предусматриваются возможности для получения самых разных импульсных последовательностей с различной продолжительностью и фазой, т. е. для осуществления импульсного программирования . Все функции спектрометра обычно находятся под контролем компьютера, который также используется для обработки данных и представления результатов. Электрические сигналы ЯМР превращаются в цифровые данные для ввода в компьютер с помощью аналого-цифроеого преобразователя. Именно он часто является узким местом, ограничивающим класс экспериментов, которые мы можем выполнять (см. гл. 2 и 3). [c.22]

    Название Достижение максимальной чувствительностн вполне можно отнести к большей части этой книги, поскольку проблема чувствительности была и остается одной из самых важных в спектроскопии ЯМР. В этом разделе будет рассмотрена в основном аппаратурная сторона вопроса о чувствительности, т. е. проблема правильного подбора компонентов спектрометра и нх настройки. Выбор параметров эксперимента, таких, как длительность импульса и задержки, которые также очень важны, будет обсуждаться в гл. 7, Существенное влияние на чувствительность оказывает форма линии, поскольку площадь сигнала [c.80]

    Теперь обсудим те стандартные условия, в которых должен регистрироваться спектр тестового образца. С тем, что проводить обсуждавшиеся ранее процедуры действительно необходимо, согласятся, по-видимо-му, все спектроскописты, даже те, кто иа практике их и не делает. Что же касается стандартных условий, то здесь вообще иет никаких обязательных элементов, не считая того, что это должно быть одно прохождение с импульсом длительностью тг/2 (см. гл. 4). В результате остаются произвольными такие параметры, как ширина спектрального диапазона, полоса фильтра и взвепшвающая функция для обработки спектра. Поэтому едииственное, что можио сделать для сравнения чувствительности спектрометров при их покупке, это настаивать на проведении гестов с совершенно одинаковыми, параметрами и в вашем присутствии. [c.84]

    Теперь вы уже можете догадаться о важности установки поля В, на ось л , т.е. иастройки фазы радиочастотного импульса. Поскольку важна только относительная фаза, мы можем просто-иапросто назвать наш первый импульс х-импульсом, и если нужно далее произвести З -импульс, то можно сместить фазу первого на 90°. Для — л-импульса потребуется смещение иа 180 , для — з -импульса-иа 270° (такие импульсы бывают нужны в некоторых экспериментах). Именно эти фазы передатчика и задают названия осей во вращающейся системе координат. В идеальном случае хотелось бы и опорную фазу приемника настроить таким образом, чтобы она соответствовала одной из осей, ио, как уже упоминалось ранее, это оказывается невозможным на импульсных спектрометрах. Фаза приемника связана некоторым произвольным (но постоянным) соотношением с фазой передатчика, поэтому в экспери- [c.116]

    Неплохо сместить фазу передатчика и на 180°, заменив при этом сложение текущих данных с областями А и В на вычитание. Это позволит уничтожить все ложные сигналы, фаза, которых ие зависит от фазы импульса. Такие сигналы могут образовываться из-за аппаратурных дефектов или каких-либо внешних наводок. Совместив эту процедуру с каждым из прохождений предыдущего цикла, мы получим четырехшаговый цикл Y LOPS (табл. 4.1), который сейчас используется в качестве стандартного на всех спектрометрах, оснащенных квадратурным детектором. На рис. 4.23 приведено также сравнение интенсивности квадратурных отражений, полученных с применением и без применения цикла Y LOPS. При определении фазового цикла принято обозначать различные режимы приемника х, у, - х и - у, как будто бы при этом действительно происходит переключение фазы опорного сигнала. Однако подробности реальной работы спектрометра остаются неясными, они зависят от его программного обеспечения. [c.124]

    В этой главе мы рассмотрим экспериментальные проблемы, с которыми часто приходится сталкиваться в практической миогоимпульс-иой спектроскопии ЯМР. Эта книга, как мы уже говорили в гл. 1, не претендует иа роль исчерпывающего учебника по практическому ЯМР. В первую очередь мне хотелось бы сосредоточить внимание иа процедурах, связанных с выбором параметров эксперимента, которые приходится выполнять каждый день, и описать, как их следует правильно выполнять. Описываемые далее некоторые современные приемы работы-это не методы экспериментального ЯМР в полном смысле слова. Они в сочетании с другими методиками позволяют повысить производительность спектрометра или ослабить влияние ошибок экспериментатора и недостатков спектрометра на качество получаемых результатов. Многие современные эксперименты чрезвычайно чувствительны к тщательному выбору длительностей импульсов, задержек и фазовых сдвигов и к тому, насколько точно заданные параметры воспринимаются спектрометром. К сожалению, к большинству спектрометров следует относиться с известным скептицизмом, поскольку очень часто реальные сигналы на выходе передатчика могут быть слабо связаны с тем, что мы от него требовали. Это в особенности относится к таким экспериментам, как, например, упоминающиеся в разд. 7.3 составные импульсы, где последовательность некоторых действий производится в мнкросекундном масштабе времени. [c.217]

    Прн любых многоимпульсных экспериментах нужно тщательно калибровать длительности импульсов, это особенно необходимо при первом выполнении нового эксперимента. Чтобы уменьшить вероятность ошибок и путаницы, важно изучить сущность вашего эксперимента и знать характеристики вашего спектрометра, наиболее для него критичные. Перед проведением нового эксперимента его следует оттестировать иа таком объекте, для которого результат уже известен, а выполнение эксперимента не требует много времени. Это значит, что нужно использовать концентрированные растворы простых соединеиий, СЛОЖ1ШСТБ которых, одиако, еще достаточна для демонстрации возможностей эксперимента. Для увеличения частоты повторения полезно сократить величины Т, с помощью добавления ацетилацетоиата [c.217]

    На практике такая процедура сопряжена с рядом сложностей. Если вы еще ие очень освоились со спектрометром и не имеете представления о возможной длительности гг-импульса. то убедитесь, что найденная вами нулевая интеисивиость действительно первая. Аналогичные точки нулевой интеисивиости соответствуют импульсам с углами поворота 2п, Зтг и т.д., поэтому начинающему пользователю очень полезно иметь представление о приблизительных величинах длительностей импульсов на различных ядрах. Еще одно препятствие состоит в том, что оператору надо решить, какой спектр принять за нулевой . я-Импульс ие может [c.220]

    Если иам необходимо осуществить иепрсрывное облучение ядер сигналом малой мощности, например при гомоядерной развязке, то удобнее использовать амплитуду поля, а ие длительность импульса. Для выбора параметров эксперимента с целью получения эффективной развязки-илн оптимальной селективности удобно иметь таблицу, отражающую связь амплитуды поля и мощности декаплера. Расчет. эффективной амплитуды поля декаплера по длительности его тг-импульса может оказаться очень сложным, поскольку на фурье-спектрометрах гомоядерная развязка реализуется при помощи облучения короткими импульсами (развязка с разделением времени), которая снижает эффективную амплитуду поля на неизвестную в общем случае величину. [c.224]

    Одно из направлений борьбы с дефектами импульсов-это чисто аппаратурное совершеиствованне конструкции датчиков. Оно решает обе проблемы, поскольку позволяет повысить как однородность, так и амплитуду поля Ву. Последний параметр, казалось бы, должен в большей степени зависеть не от датчика, а от передатчика, поскольку амплитуду поля можно повысить, просто увеличивая напряжение радиочастотного сигнала. Действительно, на практике нет реальных препятствий (кроме стоимости прибора), мешающих повысить выходное напряжение, передатчика иа несколько порядков. Препятствия создают именно компоненты датчика, которые должны работать при высоких напряжениях без деформаций и пробоя изоляторов. В настоящее время на датчиках небольших диаметров можно создать поля с амплитудой в 20-50 кГц (длительность я/2-импульса 12,5-5 мкс) и выше. Одиако параллельно с совершенствованием конструкций датчиков происходит и рост напряженности постоянных магнитных полей, что требует дальнейшего расширения спектральных диапазонов. При амплитуде радиочастотного поля 20 кГц отклонение частоты импульса от резонанса на 3,5 кГц Приводит к существенному (10") наклону оси поворота намагниченности. При наблюдении ядра С на спектрометре с рабочей частотой 500 МГц для протонов диапазон 3,5 кГц составляет только 28 м. д., а полный спектральный диапазон может быть около +120 м. д. [c.228]

    На результаты таких последовательностей оказывает влияшге и ряд экспериментальных факторов. Использование составных импульсов снижает зависимость эксперимента от параметров датчика, но повышает зависимость от качества других блоков спектрометра. Для корректного нх применения необходимо тщательно контролировать синхронность и величину фазовых сдвигов. Большинство спектрометров можно легко запрограммировать иа генеращ1ю составных импульсов, но соответствующие им реальные процессы останутся окутанными дымкой ие- [c.231]


Смотреть страницы где упоминается термин Спектрометры импульсов: [c.316]    [c.266]    [c.8]    [c.45]    [c.47]    [c.38]    [c.89]    [c.347]    [c.21]    [c.89]    [c.121]    [c.142]    [c.207]    [c.218]    [c.220]    [c.222]    [c.232]   
Масс-спектромерия и её применение в органической химии (1964) -- [ c.20 ]

Масс-спектрометрия и её применение в органической химии (1964) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Импульс



© 2025 chem21.info Реклама на сайте