Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биополимеры фракционирование

    Выделение гликопротеинов проводится различными методами, которые в зависимости от состава биополимера по своему характеру близки к приемам полисахаридной или белковой химии для решения этой сложной проблемы широко применяются развитые в последние годы методы хроматографии биополимеров, фракционированное осаждение по- [c.566]


    Многократное повторение актов адсорбции и десорбции при течении раствора через слой адсорбента приводит к отставанию наиболее поверхностно-активных компонентов, что позволяет определить их содержание в исходном растворе или отделить их от других, менее адсорбционно-активных веществ. Методы адсорбционной хроматографии широко применяются для фракционирования аминокислот, нуклеиновых кислот, белков и других биополимеров, для выделения различных ферментов и лекарственных препаратов (пенициллина, тетрациклина, алкалоидов и др.). [c.93]

    Среди лабораторных методов очистки, фракционирования и анализа структуры белков, нуклеиновых кислот и их компонентов совокупность различных хроматографических методов занимает центральное место. Ни один другой метод не может сравниться с хроматографией по широте количественного диапазона. Начиная от препаративных колонок объемом в несколько литров, на которых можно вести фракционирование граммовых количеств препарата на первых этапах выделения фермента, через разделение близких по своей природе компонентов очищенной смеси веществ, количество которых измеряется миллиграммами или долями миллиграмма, этот диапазон простирается до микроанализа аминокислотного состава белка, когда на колонку вносят сотые доли микрограмма исходного гидролизата. Вне конкуренции остается и разнообразие физико-химических параметров, по которым может осуществляться хроматографическое фракционирование молекулярные размеры, вторичная или третичная структура биополимеров, растворимость, адсорбционные характеристики молекул, степень их гидрофоб-ности, электрический заряд и, наконец, биологическое сродство к другим молекулам. [c.3]

    Для хроматографического фракционирования смеси молекул, не сильно различающихся по своим массам, следует ориентироваться на линейный участок графика селективности, так чтобы для крайних значений молекулярных масс разделяемой смеси веществ значения оставались в интервале 0,2—0,8. То же самое относится и к определению самих молекулярных масс методом гель-фильт-рации. Впрочем, если это определение ведут в денатурирующем буфере (6 М раствор гуанидинхлорида), то надо учесть, что благодаря рыхлой упаковке денатурированных биополимеров вся область фракционирования смещается в сторону меньших значений молекулярных масс, чем те, которые приведены в таблицах для нативных глобулярных белков. Коррекцию на деформацию (и изменение размеров) белков следует вводить и в случае использования детергентов, применяемых для улучшения растворимости. Детергенты разворачивают белковые глобулы, увеличивая их эффективные размеры, и, кроме того, связываются с белками, что приводит иногда к заметному увеличению массы. [c.134]


    Важнейшей областью применения эксклюзионной хроматографии является исследование высокомолекулярных соединений. Применительно к синтетическим полимерам этот метод за короткий срок занял главенствующее положение для определения их молекулярно-массовых характеристик и интенсивно используется для изучения других видов неоднородности. В химии биополимеров эксклюзионную хроматографию широко применяют для фракционирования макромолекул и определения их молекулярной массы. [c.48]

    Гель-фильтрация применяется главным образом для отделения макромолекул от низкомолекулярных солей, буферного обмена в растворах макромолекул, фракционирования макромолекул, особенно биополимеров в водных растворах, изучения ассоциации молекул (измерение свободных и связанных небольших молекул в растворах макромолекул), определения констант равновесия в растворах макромолекул и полиэлектролитах. [c.55]

    Для получения в индивидуальном состоянии смешанных биополимеров наиболее эффективными методами разделения являются хроматография (ионообменная хроматография и гель-фильтрация для гликопротеинов, адсорбционная хроматография для гликолипидов) и электрофорез во многих случаях успешно применяются методы фракционированного осаждения. [c.566]

    Выделение индивидуальных биополимеров является поэтому многоступенчатым процессом. На каждой ступени разделения должна получаться фракция, более богатая выделяемым веществом, чем на предыдущей ступени, и содержащая меньшее число побочных компонентов. Такой процесс часто называют фракционированием. [c.233]

    Все описанные выше методы грубого фракционирования, широко используемые на начальных этапах выделения биополимеров из биомассы, чаще всего не приводят к желаемому конечному результату, т.е. к получению индивидуального вещества. Последнее, как правило, достигается при использовании группы методов, которые можно квалифицировать как зональные методы разделения. Общая идеология этих методов состоит в том, что создается некоторая система, в которой компоненты смеси перемещаются с различными скоростями. Если в такую систему ввести разделяемую смесь в виде некоторой зоны, то по мере ее перемещения компоненты смеси, движущиеся в разными скоростями, будут формировать отдельные зовы, которые в конце процедуры разделения можно механически разнести в различные приемники, т.е. получить целую серию фракций. [c.237]

    Чрезвычайно широко при исследовании компонентов живой материи, в том числе биополимеров, применяются радиохимические методы. В ходе фракционирования биологического материала они могут быть применены, если живые организмы выращивались на среде, содержащей радиоактивные предшественники биополимеров, получали их в составе продуктов питания или при инъекциях. Используют главным образом изотоп водорода (тритий), изотоп углерода изотопы фосфора Щ и изотоп серы Два важнейших биогенных элемента— азот и кислород — имеют изотопы и isq распадающиеся с испусканием позитронов. Так же распадается и изотоп углерода . Они являются перспективными для использования в позитронной томографии, основанной на введении изотопов в живые организмы и обнаружении и локализации их в организме по -у-излучению, возникающему при аннигиляции позитронов и электронов. Поскольку время полураспада всех этих изотопов измеряется минутами, работа с ними [c.250]

    Наиболее употребительные относительные методы основаны на измерении подвижности биополимеров в какой-либо системе зонального фракционирования. Для нативных белков используется гель-хроматография. Из-за гетерогенности пор в таких гелях в достаточно широком диапазоне молекулярных масс объем V , в котором выходит биополимер, возрастает с уменьшением молекулярной массы М, поскольку возрастает число пор, доступных для биополимера. При этом достаточно хорошо выполняется зависимость [c.268]

    При всей тщательности проведенных исследований [302] химические методы в приложении к такому сложнейшему биополимеру, как лигнин, имеют определенные недостатки, связанные с неполной степенью конверсии из-за стерическои недоступности некоторых функциональных групп К тому же полученные брут-то-характеристики часто не дают истинной картины изменения химической структуры лигнина из-за имеющихся в препарате примесей или структурных звеньев, отличных по строению от звеньев 5, С, Н Расчет же количества структурных элементов на априорно заданную ФПЕ приводит к еще более искаженным результатам, противоречащим истинному соотношению ароматическое кольцо структурный элемент Поэтому была предпринята попытка ответить на вопрос действительно ли отличаются по химическому составу и строению фракции макромолекулы лигнина с различными Л/ , и Л/ или их структуры усреднены, если они отличаются, то необходимо оценить эти различия методами количественной спектроскопии ЯМР н и С Объектом исследования служил описанный выше фракционированный по ММ препарат ДЗС [327] [c.151]


    Стремительное развитие биоорганической химии, физической химии полимеров и молекулярной биологии дало хроматографии новый объект исследований — высокомолекулярные соединения. Возникла необходимость в разделении синтетических полимеров и биополимеров, нуклеиновых кислот, белков, а также вирусов, фагов, рибосом и пр. Достигнутый в этом направлении успех позволил одному из крупнейших специалистов в области молекулярной биологии Френсису Крику сказать, что хроматография наряду с рентгеноструктурным анализом, электронной микроскопией и ультрацентрифугированием обеспечила все наиболее крупные успехи молекулярной биологии. Здесь следует особо выделить методы фракционирования биополимеров на ионообменных целлюлозах [2] и основанную на биоспецифической сорбции афинную хроматографию [3]. [c.10]

    СКВ биофизической аппаратуры разработан новый ультрафильтра-ционный прибор, предназначенный для концентрирования разбавленных растворов биополимеров, отделения высокомолекулярных соединений от низкомолекулярных, для обеосоливания и очистки растворов, а также фракционирования смесей. Характеристики прибора приведены ниже  [c.113]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    V Все эти манипуляции облегчаются благодаря тому, что оксиапа-тит не боится контакта с воздухом и даже кратковременного обсыхания колонки. Вместе с тем колонки оксиапатита используют обычно однократно или небольшое число раз ввиду накопления необратимо сорбируемого материала. При расчете необходимого количества сорбента можно исходить из того, что 1 г сухого оксиапатита дает примерно 2,5 мл упакованного объема влажного сорбента в колонке. Температуру фракционирования выбирают, главным образом исходя из ее влияния на конформацию биополимера (особенно в случае гибридных НК). Впрочем, иногда изменения температуры используют и для фракционирования с повышением тем- [c.231]

    Для изменения ионного состава среды, в которой растворены низкомолекулярные вещества, или для их статического фракционирования удобно пользоваться сильными ионообменными смолами. Для обработки биополимеров предпочтение следует отдать слабым круипопористыл облюинпкам на основе целлюлозы, декстрана или агарозы, за исключением того случая, когда биополимер должен, не задерживаясь на колонке, выйти в ее свободном объеме, оставив за собой сорбированные низкомолекулярные примеси. В этом случае удобно воспользоваться смолой. [c.285]

    Что касается самого процесса ТСХ, то здесь можно усмотреть далеко идущую аналогию с жидкостной хроматографией на колонках. Неподвижную фазу образует н идкость, связанная со слоем фиксированного на подложке гранулированного сорбента, свойства и характеристики которого близки, а иногда даже идентичны таковым для материалов, используемых в качестве носителей неподвижной фазы в колоночной хроматографии. Здесь используются те же производные целлюлозы или силикагеля, к которым надо добавить только полоски ацетилцеллюлозы. Подвижную фазу образует жидкий элюент с аналогичными, рассмотренным ранее свойствами. Неизменной остается и сущность хроматографического процесса, базирующегося на равновесном распределении вещества между неподвижной и подвижной фазами. Как и в любом хроматографическом процессе (гель-фильтрация в тонком слое была рассмотрена в гл. 4), для целей хроматографического фракционирования это распределение должно быть сильно сдвинуто в пользу неподвижной фазы. Из всех вариантов хроматографпп для разделения компонентов белков и нуклеиновых кислот методом ТСХ (сами биополимеры очень редко выступают здесь в качестве объектов) практически пспользуют только два нормальнофазовую распределительную и ионообменную. [c.458]

    Как известно, растворимость многих биополимеров уменьшается в присутствии больших количеств неорганических солей. На этом свойстве основано, например, широко распространенное в химии белка фракционированное осаждение сульфатом аммония. Этот реагент может служить осадителем и для полисахаридов. Примером служит фракционирование с помощью сульфата аммония смеси полисахаридов, извлекаемых водой из ячменной муки . Фракционирование полисахаридов растворами солей используется не очень часто, хотя является, по-видимому, довольно перспективным, ибо соли, ныгывакщие разрыв межмолекулярных водородных связей, должны вызывать меньшее соосаждение, чем органические растворители. [c.484]

    В последние годы все большее распространение получает хроматографическое разделение веществ по их молекулярному весу, причем первое место среди таких вариантов хроматографии принадлежит гель-фильтрации на сефадексах . Сефадекс представляет собой полусинтетический -сорбент полисахаридной природы, гранулы которого обладают порами определенного размера, так что диффузия внутрь этих гранул возможна только для молекул, величина которых не превышает величину пор. Поэтому сефадекс работает как своего рода молекулярное сито , задерживающее проникающие внутрь гранул низкомолекулярные вещества и не задерживающее полимеры. Гель-фильтрация незаменима для быстрого отделения полимера от низкомолекулярных примесей (неорганических солей, мономеров и т. д.). Ее применяют и для разделения полимеров, причем одновременно можно приблизительно оценить их молек лярный вес, так как существует набор сефадексов, различающихся величиной пор. Есть все основания полагать, что в химии полисахаридов этот перспективный метод будет находить все большее применение. Особенно интересным является использование сефадексов для разделения высоко- и низкомолекулярных осколков, образующихся при расщеплении биополимеров различными реагентами , и для выделения полисахаридов из различных природных источников Хроматография на модифицированных сефадексах, обладаюш.их ионообменными свойствами, например на диэтиламиноэтилсефадексе, также может служить эффективным приемом фракционирования полисахаридов . [c.487]

    Во многих из перечисленных методов разделения применяются в значительных количествах различные вспомогательные низкомолекулярные вещества — органические растворители, соли и кислоты, создающие нужные значения ионной силы и pH. Перед окончательным выделением очищенного биополимера или перед тем как подвергать частично очищенный материал следующей стадии фракционирования, обычно требуется избавиться от этих вспомогательных соединений. Для этой цели широко используется процедур , называемая диализом. Она основана на применении мембран, проницаемых для воды и низкомолекулярных веществ и непроницаемых для биополимеров. Чаще всего с этой целью используют мембраны (пленки) из целлофана, который представляет собой нитрат целлюлозы с содержанием остатков нитрата порядка одного моля на моль остатков глюкозы. Такой материал обладает необходимой механической прочностью и в то же время достаточно гидрофилен, чтобы через 1гего проходили молекулы воды и гидрофильных низкомолекулярных компонентов. В то же время для полимерных [c.236]

    Спехтрофотомгтричесхие методы применимы в тех случаях, когда детектируемые вещества обладают характерным спектром поглощения в видимой или ультрафиолетовой области. В табл. 7.2 приведшы характерные максимумы поглощения для компонентов нуклеиновых кислот (максимальные поглощения для компонентов ДНК и РНК близки), для аминокислот, поглощающих в Сидней УФ-области спектра, и некоторых упоминавшихся в тексте низкомолекулярных соединений. Приведенные значения молярных экстинкций для аминокислот и нуклеотидов дают представление о порядке величин молярных экстинкций биополимеров, поскольку эти значения варьируют в составе биополимеров в не очень широких пределах. При применении спектрофотом ического метода Дйи детекции биополимеров по ходу фракционирования следует иметь в виду, что в используемых водных растворах практически всегда присутствуют различные низкомолекулярные соединения, в первую очередь вспомогательные электролиты, вводимые для создания н жных значений pH и ионной силы. Эти соединения должны быть прозрачны в области поглощения, используемой для деггасции выделяемых биополимеров, тем более что концентрация вспомогательных веществ нередко на несколько порядков превышает концентрацию биополимеров. [c.248]

    Подлинный успех хроматографии полимеров связан с открытием в 1959 г. Поратом и Флодиным [7] гель-проникающей хроматографии, впервые использованной ими для фракционирования биополимеров на сшитых декстрановых гелях. В отличие от метода Бейкера — Вильямса фракционирование здесь осуществляется намного проще и быстрее вследствие диффузионного обмена макромолекулами между фазой пористого сорбента и свободным пространством хроматографической колонки, а молеку-лярно-массовые. распределения получают автоматическим пересчетом хроматограмм в соответствии с характерной для данной хроматографической системы молекулярно-массовой зависимостью удерживаемых объемов. [c.11]

    Нуклеиновые кислоты являются одним из наиболее сложных типов биополимеров. В природе встречаются двунитевые и од-нонитевые, циркулярные и сверхспиральные ДНК, рибосомаль-ные, информационные и транспортные РНК, гибриды РНК— ДНК. В процессе исследований приходится иметь дело с синтетическими монотонными или смещанными полинуклеотидами. Нуклеиновые кислоты всех типов являются полианионами даже при нейтральных значениях pH. Все эти факторы позволяют использовать при фракционировании все виды хроматографии ионообменную, адсорбционную, распределительную и гель-проникающую, а также все типы хроматографических сорбентов (см. табл. 38.2). [c.67]


Библиография для Биополимеры фракционирование: [c.115]    [c.593]    [c.53]    [c.175]    [c.148]    [c.137]    [c.594]   
Смотреть страницы где упоминается термин Биополимеры фракционирование: [c.114]    [c.51]    [c.104]    [c.124]    [c.155]    [c.231]    [c.528]    [c.62]    [c.62]    [c.62]    [c.356]    [c.46]   
Хроматография полимеров (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Биополимеры



© 2025 chem21.info Реклама на сайте