Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец определение методом ААС

    Ферросиликомарганец. Метод определения фосфора Марганец металлический и марганец азотированный. Метод определения марганца [c.567]

    Марганец металлический и марганец азотированный. Методы определения фосфора [c.567]

    Марганец металлический и марганец азотированный. Метод определения азота [c.567]

    Ферросплавы, хром и марганец металлические. Методы определения серы [c.568]


    Ход определения по Пршибилу и Малику [5]. К нейтральному раствору соли двухвалентного кобальта (0,5—5 мг Со) прибавляют достаточное количество 5%-ного раствора комплексона, 6 мл 0,1 н. раствора едкого кали я 2 мл перекиси водорода. Раствор нагревают до кипения и кипятят (достаточно 1 мин.). После охлаждения и доведения объема до 100 мл определяют светопоглощение в фотоколориметре с зеленым светофильтром (540 мр.). Окраски подчиняются закону Ламберта—Беера в сравнительно узком интервале концентраций от 0,1 до 1,1 мг Со/100 мл (при толщине кюветы 34 мм). Но если содержание кобальта не превыщает 5 мг в 100 мл, то по калибровочной кривой можно получить удовлетворительные результаты. Бесцветные катионы (включая двухвалентный марганец) определению не мешают. Мешают окрашенные катионы, которые должны быть предварительно удалены (например, медь — сероводородом, железо — ацетатным методом, хром — переведением в хромат в щелочной среде). Выпавшую в осадке гидроокись кобальта (III) растворяют и определяют кобальт в полученном растворе колориметрическим методом. [c.187]

    Последующее полярографическое определение молибдена, меди и цинка проводят так же, как и при анализе почв. В оставшемся объеме фильтрата может быть определен марганец персульфатным методом. [c.197]

    Марганца определение в рудах. Содержание марганца в рудах необходимо знать для оценки рентабельности их разработки. Марганец определяют методом потенциометрического титрова- [c.62]

    Для определения вполне пригоден персульфатный метод (стр. 550), но возможен и другой метод, в котором 50—100 мл воды подкисляют серной и азотной кислотами, добавляя каждой по 3—4 капли, и выпаривают досуха (можно использовать для этого стакан из стекла пирекс). Затем определяют марганец периодатным методом (стр. 548), используя небольшие объемы растворов. [c.553]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]


    В качестве примера влияния побочных процессов можно рассмотреть определение марганца, никеля пли кобальта титрованием их солей рабочим раствором окислителя в щелочной среде. При обработке растворов солей марганца, никеля или кобальта едкой щелочью и окислителем выпадают черные осадки высших окислов. Эти окислы не имеют обычно оире/гелен-ного состава например, при осаждении никеля обычно получается смесь КМ(0Н)2 и N1 (0Н)з. Кроме того, в щелочной среде марганец окисляется частично кислородом воздуха и т. д. Поэтому количество окислителя, затраченного на осаждение названных элементов в щелочной среде, не находится в точном стехиометрическом отношении к количеству никеля или марганца. В подобных случаях объемный метод, очевидно, неприменим.  [c.267]

    Для определения марганца используют ряд методов. Из них большее распространение получили методы, основанные на окислении марганца (II) в марганец (VII) (марганцовую кислоту). Эти методы обычно применяют для определения марганца в сталях, чугунах, горных породах. [c.167]

    Для определения марганца в присутствии железа может быть использован вариант дифференциального спектрофотометрического метода (см. стр. 71). Раствор анализируемого образца, содержащий марганец и железо в количестве 0,5—3 мг, помещают в мерную колбу емкостью 100 мл и доводят объем раствора водой до метки. Готовят три раствора  [c.172]

    Марганец и хром в стали можно определять одновременно, окисляя соответственно до бихромата и перманганата персульфатом аммония. Растворы фотометрируют при А, 440 им, соответствующей максимуму поглощения бихромата, и X 545 нм, соответствующей максимуму поглощения перманганата (см. рис. 11 и 53). Определение содержания марганца и хрома при совместном присутствии облегчается тем, что при X 545 нм поглощает только перманганат. Для расчета процентного содержания марганца и хрома в стали могут быть использованы два метода. [c.173]

    При определении натрия в марганцевых рудах в пламени светильный газ—воздух использовали два метода отделяли марганец осаж- [c.159]

    Свойства. Зеленовато-коричневые кристаллы или порошок. Применяют для определения РЗЭ при pH 4—6 переход окраски от голубой к красной для определения висмута (III) при pH 2—3 и свинца при pH 4 переход окраски от красной к желто-оранжевой. При pH 7—8 определяют никель, кобальт, кадмий, магний и марганец переход окраски от сине-фиолетовой к красной. Методом обратного титрования определяют палладий, таллий (III), железо, индий и галлий (III), [c.273]

    Марганец — один из первых редких металлов, применяемых в промышленности, например, для производства стали. Поэтому интерес к аналитической химии марганца возник очень давно. Однако наибольшие успехи в разработке новых методов анализа для определения марганца в различных природных и промышленных материалах достигнуты за последние два десятилетия. В на-стояш,ее время марганец определяют при анализе сталей, сплавов, полупроводниковых материалов, особо чистых веществ, органических веществ, почв, биологических материалов, горных пород различного происхождения, минералов, руд и, наконец, космического вещества в виде метеоритов и лунных пород. [c.5]

    Впервые определение марганца методом комплексонометрии было выполнено в 1948 г. [738]. Марганец определяют прямым титрованием комплексоном III обратным титрованием избытка комплексона III растворами солей Mg(II), Zn(II), o(II), Hg(II) и титрованием по методу вытеснения. [c.44]

    Марганец — один из наиболее трудных элементов при использовании кинетических методов анализа [7701. Тем не менее существует несколько индикаторных гомогенных каталитических реакций для его определения. [c.82]

    Ряд других элементов может быть определен методами, аналогичными описанному. Марганец, кадмий, цинк, кобальт образуют соли общей формулы Me NH4P04 и осаждаются количественно при соответствующих условиях. [c.185]

    Кинетическим методом, основанным на каталитическом действии марганца на реакцию окисления малахитового зеленого при pH 3,5 посредством К104, марганец определен в Mg(NOз)2 [326]. [c.162]

    Приведенный на стр. 22 другой объемный метод требует значительно меньше времени. В этом методе алюминий определяют добавлением к раствору, полученному после отделения титана, избытка комплексона III и обратным титрованием не связанного комплексона III стандартным раствором соли цинка с использованием ксиленолового оранжевого в качестве индикатора Метод применим для анализа титаналюминиевых сплавов, содержащих железо и марганец. Определению мешают олово, ванадий и медь. [c.18]

    Определение марганца методом фотометрии пламени рекомендуют проводить в растворах 24, минералах ирудах Э сплавах цветных металлов 39, ферромарганце 5, ферритах сталей золе растений , вытяжках из почв в стеклах з цементе доменных шлаках , меди и сталии других объектах 8.и исключения помех рекомендуют определять марганец по методу добавок с учетом фона или же проводить предварительное ионообменное разделение  [c.285]


    Сущность метода. Определение индия в магниевых сплавах выполняют фотометрированием изобутанольных экстрактов комплексных соединений индия с 1-(2-ниридилазо)-2-нафтолом (ПАН) из сернокислых растворов при pH = 4,5 ч- 5,0. Присутствующие часто в сплавах алюминий, цирконий, торий, марганец и редкоземельные элементы не влияют на результаты определения. Метод позволяет определять индий при его содержании в сплаве от 0,1 до 1%. Продолжительность анализа 40—50 мин. Точность определений 0,02—0,01%. [c.235]

    Определение в воздухе. Воздух, содержащий соли М., просасывают через алонж, заполненный стеклянной ватой. Сама М. при взаимодействии с диэтилдитиокарбонатом натрия образует окрашенный в желтый цвет комплекс. По интенсивности окраски ведут колориметрическое определение. Метод не специфичен мешают свинец, железо, марганец, цинк (последний в количестве более 3 мг). [c.453]

    Определение щелочных металлов после разложения плавиковой и серной кислотами требует много времени. Особенно трудно избел<ать потерь при удалении аммонийных солей много операций необходимо провести для отделения магния. В связи с этими недостатками метод применяется сравнительно редко. Метод разложения плавиковой и серной кислотой чаще применяется для определения отдельных компонентов (марганец, фосфор, редкие земли и т. п.). [c.471]

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]

    Легко заметить, что из двух возможных методов определения какого-либо элемента при прочих равных условиях тот будет более точным, для которого фактор пересчета меньший. Так, например, марганец (ат. вес 54,93) можно определять и взвешивать в виде МП2Р2О7 (мол. вес. 283,82) и в виде МпзОд (мол. вес, 228,79). Но в первом случае фактор пересчета [c.65]

    Микротвердость бывших аустенитных участков можно увели-чить с помощью термической обработки, однако закалка белого чугуна нредставляет определенную трудность, сопровождается воз< никновением микротрещин и приводит к снижению стойкости при многократных ударных нагрузках. В связи с этим основным методом повышения твердости бывших аустенитных участков следует считать легирование белого чугуна элементами, способствующими переохлаждению аустенита и переводу его в мартенсит при обычных скоростях охлаждения отливок. Такими элементами являются хром, никель (при совместном присутствии), марганец, молибден и некоторые другие. [c.34]

    Электролизом на ртутном катоде отделяются следующие металлы Ре, Сг, Со, N 1 Си, 2п, Мо, Сс1, 5п, РЬ, В , Н , Т1, 1п, Ga, Ge, Ag, Аи, Pt, Рс1, КЬ, 1г, Ке. Не отделяются А1, Т , 2г, V, и, ТЬ, Ве, NЬ, Та, W, Р, Аз, 8с, У, РЗЭ, Mg, щелочные и щелочноземельные металлы. Марганец отделяется неполностью, часть его окисляется до МпОа и выделяется на аноде, может также окислиться до Мп04", окрашивая раствор в малиновый цвет. Дюбель и Флюршютц [689] считают, что если во время электролиза в электролит добавить несколько капель 30%-ной перекиси водорода, то достигается количественное отделение марганца. Хром медленно удаляется при электролизе. Поэтому при анализе сталей, содержащих > 5% хрома, большую часть его рекомендуется отделять до электролиза в виде хлорида хромила [555]. Небольшая часть железа всегда -остается в электролите. Однако эти остающиеся количества железа не мешают во многих фотометрических методах определения алюминия, если восстановить железо аскорбиновой кислотой до Ре (П). В электролите могут остаться также следы хрома и молибдена. [c.191]

    Применяют для определения алюминия при pH 7—8 методом обратного титрования солью цинка в присутствии пиридина. Барий, кальций и ртуть титруют при pH 10 в присутствии комплексоната магния. Кадмий и кобальт при pH 10 определяют прямым титрованием. Магний, цинк, железо (III) и титан (IV)—методом обратного титрования солью цинка в присутствии пиридина. Галлий (III) при pH 6,5—9,5 определяют обратным титрованием солью цинка. Индий определяют при pH 8—10 в присутствии сегнетовой соли марганец при pH 10 —с добавлением гидроксиламина. Никель и свинец при pH 10—методом обратного титрования солью магния или цинка. Титан (IV) определяют при pH 10 обратным титрованием солью магния или с добавлением комплексоната магния. Ванадий (V) определяют при pH 10 методом обратного титрования солью марганца. Переход окраски от винно-красной к синей. [c.279]

    Расширение объектов исследования и все возрастающие требования современной промышленности к чистоте материалов и к комплексному использованию сырья привели к разработке новых, более точных, быстрых и высокочувствительных методов определения марганца. Наиболее существенным достижением в аналитической химии марганца явилось использование ней-троно-активационного метода. Благодаря высокому значению поперечного сечения реакции радиационного захвата тепловых нейтронов природным изотопом Мп, этот метод позволяет определять марганец из очень малых количеств исследуемых проб и без их разрушения. Это имеет принципиально важное значение при анализе уникальных проб космического происхождения, что способствует решению ряда важнейших космогонических проблем, таких как нуклеосинтез, ядерная эволюция вещества Солнечной системы, а также созданию геохимической модели земной коры и верхней мантип. Большой интерес представляют работы по нейтроно-активационному определению ничтожно малых количеств радиоактивного Мп, образующегося в метеоритах и породах лунной поверхности за счет ядерных взаимодействий с космическими лучами. Этот изотоп позволяет изучать вариации интенсивности космических лучей и солнечной активности за последние десять миллионов лет. [c.5]

    Применение перйодата калия или натрия для окисления Мп(П) дает возможность с высокой точностью и более надежно определять марганец в различных объектах. Впервые этот метод для определения марганца был предложен в 1917 г. [1531]. Растворы получают более устойчивыми, чем при окислении персульфатом аммония [161, 664]. Реакция (см. стр. 28) протекает довольно быстро в горячем растворе, содержащем HNO3 или H2SO4. Для ускорения этой реакции применяют соли серебра [638, 640]. [c.55]

    Глюконовая кислота. При взаимодействии Мп(П) с глюконовой кислотой получают соединение состава 2 3. Оптическую плотность образуемого комплекса измеряют при 440 нм. Закон Бера соблюдается для растворов с концентрацией марганца от 10 до 50 мкг1мл. Определению марганца мешают Fe(IH), Ге(П), u(II), U(VI), o(II), e(IV). Метод позволяет определить марганец в присутствии ЪО мкг/мл Li(I), Al(III), Bi(III), Zn(II), a(II), Mg(II), a также NH , РОГ, J , H OO-, 10 , NO , l , Bp-, S N", AsOr, SO i , ЗЮГ- Метод использован для опреде- [c.69]

    Кальцихром с Мп(П) при pH 8—12 образует комплексное соединение состава 1 1с максимумами светопоглощения при 308 и 525 нм. Марганец в растворе определяют методом спектрофотометрии. Оптическую плотность раствора при этом измеряют при 590 нм. Определению марганца не мешают ионы Са(П), Mg(II), u(II), o(II), Ni(II), Sr(II), Al(III), Ге(1П), Ti(IV), V(V). Чувствительность метода 3,7-10 мкг Мп на 0,001 единицу оптической плотности. [c.69]

    Для колориметрического определения марганца применяют маи-ганон ИРЕ А (салицилаль-о-аминофенол) [2761, который дает возможность определять марганец в присутствии ионов Fe(III), Ni(II), Сг(Ш), Mg(II), Ba(II), Al(III), d(II), As(III), Ag(I), Mo(VI), Zn(II), Hg(II) при отношении Mn Me от 1 50 до 1 200. В присутствии больших количеств Fe(III), Ni(II) и Се(Ш) необходимо добавить тартрат натрия или калия. Чувствительность определения 0,25 мкг Мп/5 мл. Метод применяют для определения марганца в солях щелочных металлов. [c.70]

    ВОЛНЫ Мп(П) в случае применения ВаСОд несколько снижается. Метод применяют для определения марганца в сталях [400]. Волну Fe(II) можно устранить путем связывания железа в цианидный комплекс. Отделить марганец от Со(П), Ni(II), u(II) и Zn(II) можно осаждением его в виде MnOj. Волны Со(П) и Ni(II) сдвигаются в область более положительных потенциалов добавлением KS N. [c.77]


Смотреть страницы где упоминается термин Марганец определение методом ААС: [c.89]    [c.28]    [c.46]    [c.58]    [c.519]    [c.342]    [c.57]    [c.62]    [c.62]    [c.64]    [c.76]   
Аналитическая химия промышленных сточных вод (1984) -- [ c.22 , c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Активационное определение марганца инструментальными методами

Активационное определение марганца радиохимическими методами

Весовой метод—определение в виде пирофосфорнокислого марганца

Вода питьевая. Методы определения содержания марганца

Клинкер, цемент, бетон и сили- ж) Определение марганца катные породы объемным персульфат. ным методом

Количественное определение марганца в виде перманганата методом дифференциальной спектрофотометрии

Лебедева Фотоколориметрические методы определения содержания окисей железа, титана и марганца в известняках, шлаках и цементах

Магний, методы определения внесение поправки на содержание марганца

Марганец металлический, определение методом

Марганец определение

Марганец определение методом кристаллофосфоров

Марганец сернокислый, коэффициент активности определение методом электропроводности

Марганец, методы определения весовой

Марганец, методы определения колориметрический

Марганец, методы определения объемный

Марганец, методы определения окисления-восстановления

Марганец, методы определения полярографический

Марганец, определение арсенит-нитритным методом

Меркурометрическое определение железа (III) в электролитах хромироваОпределение марганца в сталях методом потенциометрического титрования с двумя индикаторными электродами

Метод определения с марганцем и о-толидином

Методы определения содержания марганца

Определение алюминия, железа, меди, кадмия, цинка, кобальта, никеля, титана, хрома, марганца в сточных водах из одной пробы методом полярографии и фотоэлектроколориметрии . Определение натрия в природных водах методом полярографии

Определение кобальта, никеля, алюминия, марганца и меди спектральным методом

Определение марганца в воздхе производственных помещений. методом полярографии

Определение марганца и ванадия из одной навески амперометрическим методом

Определение марганца и кремния фотоколориметрическим методом — Определение углерода потенциометрическим методом

Определение марганца персульфатным методом

Определение марганца, хрома и никеля в стали методом трех эталонов

Определение марганца, хрома и никеля в стали методом фотометрического интерполирования

Определение меди, цинка и марганца в пыли атмосферного воздуха методом полярографии

Определение никкеля, кобальта, железа, цинка, марганца —Новейшие методы анализа металлического свинца

Определение примесей в марганце активационными методами

Определение примесей в марганце спектральными методами

Определение примесей в марганце фотометрическими методами

Определение содержания марганца в почве атомно-абсорбционным методом

Определение содержания марганца в растениях атомно-абсорбционным методом

Определение содержания подвижных соединений марганца по методу Крупского и Александровой (в ацетатно-аммонийной вытяжке

Определение цинка, кадмия, алюминия, висмута, кобальта, марганца, олова, свинца, меди, магния, кремния, железа, мышьяка и сурьмы спектральным методом

Раздельное определение марганца, хрома и железа в воздухе методом полярографии



© 2024 chem21.info Реклама на сайте