Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец, методы определения колориметрический

    Весовые методы определения марганца применяются редко. Обычно марганец взвешивают иди в виде пирофосфата, или в виде сульфата мар-ганца. Определение малых количеств марганца в породах весовыми методами почти всегда приводит к полз чению повышенных результатов. Колориметрические методы определения марганца могут применяться только для определения малых его количеств, такие обычно и встречаются в большинстве пород и минералов. [c.497]


    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]

    Общие замечания. При помощи описанного ниже колориметрического метода можно очень точно определить марганец, когда он присутствует в количествах, обычных для горных пород. В случае содержания МпО выше 1 % лучше вести определение в главной навеске, как описано на стр. 156—163. Метод определения бария, изложенный ниже, дает очень точные результаты. [c.101]

    Спектрографическое определение металлов в продуктах питания предложено производить в буферном растворе, что позволяет избежать влияния щелочных и щелочноземельных металлов, количество которых постоянно колеблется [35]. Этим путем удается определить в одной навеске марганец, железо, алюминий и медь с точностью до 10%. а, а-Дипиридил является излюбленным реактивом -для колориметрического определения железа в пищевых продуктах [136, 243, 298], хотя и роданид калия также имеет своих приверженцев [222, 272]. Для озоления образца предпочитают прокаливание, однако предложен и упрощенный метод определения железа в молоке [243], не нуждающийся в озолении анализ, производится непосредственно в фильтрате после осаждения раствором соляной и трихлоруксусной кислот, содержащим тио-гликолевую кислоту. Хотя в таблицах состава пищевых продуктов приводятся обычно высокие цифры содержания железа в молоке, но результаты исследования сырого молока на американском рынке за последние годы показали, что среднее содержание железа составляет всего 0,3 жз/кг с пределами колебания от 0,114 до 0,0650 мг [147,148]. Такое расхождение можно объяснить как более высокой точностью современных колориметрических методов онределения следов железа, так и изменением условий хранения молока, на -правленного к уменьшению загрязнений металлами. [c.175]


    Определение марганца в шлаках производят, как правило, из отдельной навески или совместно с определением хрома [441, 686]. Количество марганца < 1% определяют колориметрическим методом, при более высоком содержании марганца применяют титриметрические методы [136, 601]. Марганец определяют также потенциометрическим методом [97, 216]. [c.157]

    Взвешивание в виде пирофосфата марганца. Пирофосфатный. метод был предложен еще в 1867 г. и затем несколько позже усовершенствован . Вероятно, он является наилучшим методом весового определения марганца. Метод основан на осаждении фосфата марганца и аммония в слабоаммиачном растворе, содержащем избыток аммонийных, солей, и требует предварительного отделения марганца от элементов, также осаждающихся в этих условиях. Его обычно применяют после предварительного отделения марганца в виде двуокиси марганца и очистки осадка от примесей , как описано на стр. 494., При выполнении очень точных анализов вводят поправки, определяя колориметрически марганец в фильтратах и промывных водах, полученных после выделения сначала двуокиси марганца, потом фосфата марганца. Эти поправки обычно не превышают 0,3 мг марганца в первом фильтрате и 0,2 мг — во втором фильтрате. [c.503]

    Ход определения по Пршибилу и Малику [5]. К нейтральному раствору соли двухвалентного кобальта (0,5—5 мг Со) прибавляют достаточное количество 5%-ного раствора комплексона, 6 мл 0,1 н. раствора едкого кали я 2 мл перекиси водорода. Раствор нагревают до кипения и кипятят (достаточно 1 мин.). После охлаждения и доведения объема до 100 мл определяют светопоглощение в фотоколориметре с зеленым светофильтром (540 мр.). Окраски подчиняются закону Ламберта—Беера в сравнительно узком интервале концентраций от 0,1 до 1,1 мг Со/100 мл (при толщине кюветы 34 мм). Но если содержание кобальта не превыщает 5 мг в 100 мл, то по калибровочной кривой можно получить удовлетворительные результаты. Бесцветные катионы (включая двухвалентный марганец) определению не мешают. Мешают окрашенные катионы, которые должны быть предварительно удалены (например, медь — сероводородом, железо — ацетатным методом, хром — переведением в хромат в щелочной среде). Выпавшую в осадке гидроокись кобальта (III) растворяют и определяют кобальт в полученном растворе колориметрическим методом. [c.187]

    После окисления марганца надсернокислым аммонием определение можно выполнить также колориметрическим методом по интенсивности окраски раствора образовавшейся марганцевой кислоты. Однако при колориметрическом методе получаются более надежные результаты, если марганец окисляют перйодатом калия по уравнению [c.176]

    H. К- Кускова разработала метод колориметрического определения алюминия в стали посредством о-оксихинолина. Сопутствующие компоненты (железо, марганец и др.) отделяют бензоатом аммония. Определение алюминия производят, как указано в п. а . [c.305]

    Применяя висмутатный метод, существенно полуторные окислы осадить без брома для того, чтобы марганец по возможности перешел в фильтрат. Желательно также, чтобы осадок полуторных окислов после взвешивания был переведен в раствор сплавлением с пиросульфатом и окислен перйодатом для колориметрического определения марганца (0,1 аликвотной части [c.159]

    Для определения общего содержания всех форм марганца в питьевых, поверхностных и сточных водах предлагается колориметрический метод, в котором марганец (II) окисляют до перманганата персульфатом. Раздельное определение нерастворимых и растворимых форм марганца проводят, определяя его в нефильтрованной и в профильтрованной пробах. [c.265]

    Марганец определяют из аликвотной части раствора колориметрическим методом и в результат определения магния по разности вводят поправку. [c.22]

    Вольфрам определяют колориметрическим методом с роданидом калия,, применяя в качестве восстановителя треххлористый титан. В случае полярографического определения железо, титан, хром и марганец предварительно отделяют едким натром. Полярограмму снимают при Е1, — 0,42 в на фоне лимонной и соляной кислот. Амперометрическое определение вольфрама выполняют после отделения титана титрованием раствором азотнокислого свинца нри pH 5, начиная от—0,8 в. Определению воль([)рама мешают сульфаты, хлориды, молибдаты, хроматы и ванадаты. [c.249]

    Ход анализа. Навеску 2 г металла растворяют при нагревании в смеси. 25 мл серной (1 5) а 5 мл фосфорной кислот, после растворения навески окйсляют железо азотной кислотой, упаривают до дыма, охлаждают, прибавляют 50 мл воды, 5 мл 1%-ного раствора нитрата серебра, нагревают до кипения и окисляют хром и могущий присутствовать в пробе марганец 10 мл 10%-ного раствора персульфата аммония. Избыток персульфата удаляют кипячением, а марганцевую кислоту восстанавливают хлоридом натрия (5 мл 5%-ного раствора). После охлаждения титруют раствором соли Мора, концентрация которого определяется количеством хрома в титруемом растворе. Можно титровать либо весь раствор, либо, переведя его в мерную колбу, титровать только аликвотную часть (в зависимости от содержания хрома и от взятой навески). Из этого же раствора можно определять и ванадий, как указано в соответствующем разделе. Описанным методом определяют от 0,03 до 0,15% хрома в различных чугунах, сталях и в стандартном образце стали № 20-Г. Метод считается наилучшим (по сравнению с колориметрическим или обычным объемным) методом определения хрома. [c.339]


    Из новых работ отметим работу Сендэла и Перлиха но определению никеля и кобальта в силикатных породах. Определение никеля основано на осаждении его диметилглиоксимом из аммиачно-тартратного раствора анализируемой породы, экстрагировании полученного соединения хлороформом, взбалтывании хлороформного слоя с соляной кислотой для переведения никеля в воДную фазу и конечном его определении колориметрическим методом с диметилглиоксимом (см. стр. 468, сноска 2) при концентрации его, не превышающей 6 мкг в 1 мл. Этим методом можно обнаружить 0,0001% никеля в 0,5 г пробы медь, кобальт, марганец, хром и ванадий в количествах, в каких эти элементы встречаются в большинстве изверженных горных пород, определению никеля не мешают. [c.1034]

    Методы определения кальция и магния практически совпадают с приведенными в предыдущих параграфах. Отдельные варианты различаются главным образом способами разложения анализируемых проб в зависимости от их химического состава. Различные отклонения в методах, имеющиеся при отделении мешающих элементов, часто бывают вызваны личными вкусами того или иного исследователя. Так, например, при анализе силикатов Бэнкс [27] рекомендует выделять железо, алюминий и марганец добавлением аммиака и бромной воды, после чего в аликвотных порциях фильтрата определять кальний и магний по разности в результатах двух титрований в присутствии мурексида и эриохрома черного Т. Беккер [28] точно также осаждает полуторные окислы аммиаком при анализе цементов. Аналогично поступает и Хабёк [29]. При анализе шлаков и руд Граус и Цёллер [30] рекомендуют после растворения пробы и выделения кремнекислоты осаждать тяжелые металлы в мерной колбе сульфидом аммония. После доведения объема раствора до метки достаточно профильтровать только его часть и определить в нем суммарное содержание кальция и магния или содержание одного только кальция. При проведении таких анализов не следует ограничиваться только комплексометрическим определением кальция и магния. Другие присутствующие в растворе катионы в зависимости от их концентрации можно определять комплексометрически (А1, Ре), колориметрически (Т1, Ре), полярографически или воспользоваться методом фотометрии пламени (щелочные металлы). Такой количественный полумикрометод полного анализа силикатов описывают Кори и Джексон [31]. Пробу силиката разрушают плавиковой кислотой или сплавлением с карбонатом натрия. В зависимости от способа разложения пробы в соединении с известными операциями разделения (осаждение аммиаком, щелочью и т. п.) они методом фотометрии пламени определяют натрий и калий, колориметрически — кремнекислоту молибдатом аммония, железо и титан раздельно с помощью тирона, алюминий — алюминоном и, наконец, кальций и магний комплексометрическим титрованием. За подробностями отсылаем читателя к оригинальной работе авторов метода. О некоторых полных анализах сили- [c.453]

    Мы не можем касаться здесь аналитической техники определения кислорода. Из реагентов, применяемых для этих целей, можно назвать белый фосфор, органические поглотители кислорода (такие, как пирогаллол или лейкосоединения красителей), медь, гипосульфит натрия и хлористый хром. Для растворов самым распространенным является, повидимому, метод Винклера в нем кислород используется для освобождения эквивалентного количества хлора (через промежуточную систему двухлористый марганец — треххлористый марганец), который легко может быть определен путем титрования иодистым калием и тиосульфатом. Если для определения кислорода применяются пирогаллол или лейкосоединения красителей (белое индиго, лейкометиленовый синий), процесс освобождения кислорода может быть прослежен колориметрически или спектрофотометрически. Подобная же методика применима при превращении гемоглобина в оксигемоглобин такой метод определения кислорода был впервые введен при исследовании фотосинтеза Хоппе-Зейлером [5] и позже использован Хиллом [64, 74]. Для тех же целей Остергаут [23, 24] предложил использовать кровь краба, содержащую гемоцианин и синеющую в присутствии кислорода. [c.254]

    Существует огромное количество органических соединений, дающих чувствительные цветные реакции с медью, и описано много колориметрических методов для определения последней. Двумя наиболее важными колориметрическими реактивами являются дитизон и диэтилдитиокарбаминат натрия. Дитизон — более чувствительный реактив, но ртуть, серебро и большие количества железа препятствуют его прямому применению, и необходимо принимать специальные меры, если присутствуют эти элементы. Метод определения посредством диэтилдитиокар-бамината применим в присутствии умеренных количеств железа так же, как и в присутствии ртути, а возможно и серебра. С другой стороны, марганец, никель и кобальт мешают при диэтилдитиокарбаминатном методе, но не мешают при дитизоновом. Висмут мешает в обоих методах, но в дитизоновом меньше, чем в диэтилдитиокарбаминатном. Дитизоном определяются меньшие количества меди, и потому при определении следов этот реактив часто имеет преимущество. Кроме того, дитизоновый метод можно применить к кислым растворам, и поэтому [c.308]

    Медь раньше определялась осаждением в виде сульфида с последующим взвешиванием в виде окиси или колориметрическим сравнением однако при малом содержании в породах для точной работы нужна была очень большая навеска, например 20—50 г. Принятый автором для силикатного анализа крайне чувствительный колориметрический метод определения меди органическим реактивом диэтилдитиокарбаматом натрия делает возможным очень точное определение 0,001—0,25% СиО из навески 2 г [36]. Этот органический реактив дает с медью в слабоаммиачном растворе желтую окраску. К счастью, другие металлы, дающие с этим реактивом окраску, в том числе висмут, дающий тот же цвет, могут быть удалены предварительным осаждением аммиаком. Соли таллия вызывают сильное помутнение, так что минералы, разделенные в жидкости Клеричи, необходимо до исследования очень основательно промывать горячей водой. Хром, цинк, никель и марганец дают с реактивом слабую муть и неполно осаждаются аммиаком, но содержания их в породах слишком малы, чтобы мешать определению. Органический реактив чрезвычайно чувствителен к железу, дающему бурый цвет, так что полное удаление нежелательных компонентов, особенно железа, осаждением аммиаком надо производить очень тщательно. [c.134]

    Марганец. Марганец почти всегда присутствует в породах в количествах, заслуживающих определения, так что качественное испытание, несмотря на все его достоинства, редко приходится применять. В некоторых силикатных минералах, например в гранатах со значительным содержанием спессартиновой молекулы, марганца оказывается слишком много для определения колориметрическим методом, и его приходится определять весовым путем. Если количество материала ограничено, может оказаться очень полезным установить порядок содержания марганца в небольшой порции, например в 0,01—0,02 г, раньше чем приступить к самому анализу. Испытание лучше всего производить следующим образом. [c.221]

    Малые количества марганца лучше всего определять колориметрическим методом. Определение более точно, если для его выполнения берут отдельную навеску пробы. Измельченную в порошок породу, если она без остатка разлагается кислотами, растворяют в разбавленной, свободной от хлора азотной кислоте, раствор фильтруют, если нужно, и обрабатывают полностью или аликвотную его часть, как описано на стр. 881. Если анализируемая порода не вполне разлагается кислотой или раствор получается окрашенным органическими веществами, то лучше всего порошок породы прокалить с карбонатом натрия (взятым в количестве, равном половине его веса и не содержащем марганца) в косо направленном пламени паяльной горелки. Охлажденный плав следует оЗраэотать при нагревании азотной кислотой, пока остаток, который может оказаться, не станет совершенно бесцветным, профильтровать, собирая фильтрат в колбу подходящей емкости, и определить в нем марганец. [c.966]

    Окрашенное соединение, по-видимому, имеет следующий состав (СН2МО)зМп, в котором марганец присутствует в трехвалентном состоянии На этой реакции основаны различные колориметрические методы определения марганца . В одном из исследованных методов найдено, что окраска образуется в течение нескольких минут и устойчива более чем в течение 16 час. Избыток аммиака, который берут для создания щелочного раствора, не лимитирован. [c.550]

    Для колориметрического определения марганца применяют маи-ганон ИРЕ А (салицилаль-о-аминофенол) [2761, который дает возможность определять марганец в присутствии ионов Fe(III), Ni(II), Сг(Ш), Mg(II), Ba(II), Al(III), d(II), As(III), Ag(I), Mo(VI), Zn(II), Hg(II) при отношении Mn Me от 1 50 до 1 200. В присутствии больших количеств Fe(III), Ni(II) и Се(Ш) необходимо добавить тартрат натрия или калия. Чувствительность определения 0,25 мкг Мп/5 мл. Метод применяют для определения марганца в солях щелочных металлов. [c.70]

    Метод колориметрического титрования особенно удобен в тех случаях, когда окраска развивается быстро. Если реакция переведения определяемого иона в окрашенное соединение требует длительного времени или сложной обработки (кипячение, фильтрование и т.п.), но сам окрашенный раствор устойчив во времени, поступают следующим образом известное количество определяемого вещества заранее переводят в окрашенное соединение и затем разбавляют до определенного объема и получают, таким образом, окрашенный стандартный раствор титрование проводят этим окрашенным стандартным раствором до уравнивания окрасок. Например, так можно определять марганец, применяя для титрования стандартный раствор КМПО4. Метод колориметрического титрования очень прост, выполняется быстро и широко применяется в производственных лабораториях для определения алюминия, молибдена, ниобия, нитритов и др. Точность метода при некотором навыке вполне удовлетворительна (2—5% относительных). Метод колориметрического титрования особенно удобен при единичных анализах, так как требует небольшого расхода реактивов и времени. [c.30]

    Метод колориметрического титрования особенно удобен в тех случаях, когда при переведении определяемого иона в окрашенное соединение окраска развивается быстро. Если же реакция требует длительного времени или сложной обработки (кипячение, фильтрование и т. п.), но сам окрашенный раствор устойчив во времени, поступаю иначе. Известное количество определяемого вещества заранее переводят в окрашенное соединение, затем разбавляют до определенного объема и получают окрашенный стандартный раствор. Титрование проводят этим раствором до уравнивания окраски с анализируемым раствором. Например, так можно определять марганец, применяя для титрования стандартный раствор КМПО4. [c.30]

    При восстановлении малых количеств мышьяка гипофосфитом натрия образуются окрашенные коллоидные растворы — б Большинство элементов, как, например, медь, железо, олово, висмут, алюминий, марганец, цинк, свинец, щелочные и щелочноземельные металлы, не мешают колориметрическому определению мышьяка гипофосфитным методом. Однако ряд элементов в этих же условиях или восстанавливаются до металла (серебро, ртуть и др.) или цр низших степеней окисления (молибден), или образуют окрашенные растворы (кобальт, никель, хром), в результате чего непосредственное колориметрическое определение мышьяка в присутствии таких элементов невозможно. В этом случае для отделения мышьяка от примесей применяют метод отгонки в виде А5С1д. [c.270]

    Во всех перечисленных нами визуальных методах колориметриро-вания используют поглощение света в видимой области, поэтому для определения того или иного элемента требуется перевести этот элемент форму окрашенного соединения, хорошо визуально наблюдаемого. В качестве примера можно привести определение марганца в виде перманганат-иона в сталях. В этом случае после растворения стали в кислотах (но не в соляной) под действием персульфата аммония в кислой среде (в присутствии ионов серебра как катализатора) двухвалентный марганец окисляют до семивалентного и далее определяют методом колориметрического титрования. Другим, примером визуального колориметри-рования может служить определение железа в виде его роданидного интенсивно окрашенного комплекса,, определение малых количеств никеля с диметилглиоксимом и др. [c.176]

    В предыдущих разделах были рассмотрены визуальные методы колориметрических измерений, при которых наблюдение цвета и интенсивности окраски производится непосредственно глазом. Этот способ имеет известные преимущества, связанные с тем, что глаз может отличить не только интенсивность окраски раствора, но и оттенки окраски. Однако визуальный метод имеет и недостатки, главным из которых является утомляемость глаза при длительной работе, различное восприятие окрасок разными людьми и т. д. Кроме того, высокая чувствительность глаза к восприятию оттенков иногда вызывает неожиданные затруднения. Так, например, при колориметрическом определении марганца его. переводят в перманганат в зависимости от условий окисления некоторая часть марганца окисляется только до двуокиси марганца, остающейся в растворе в коллоидальной форме. Небольшое количество окрашенной примеси (в данном случае МпОз) придает раствору основного окрашенного компонента КМПО4) особый оттенок. Два раствора, содержащие одинаковые количества перманганата, но разные количества примеси коллоидной двуокиси марганца, показывают почти одинаковое поглощение света, если измерение ведется посредством фотоэлемента. Однако оттенки их могут настолько отличаться, что химику нередко приходится совсем отказываться от измерения и начинать определение заново, т. е. повторно окислять марганец до перманганата. [c.131]

    Наиболее часто применямый метод отделения хрома основан на окислении последнего в щелочной среде до хромата, который остается в растворе, в то время как многие металлы — железо, титан, марганец, никель, кобальт и т. п., выпадают при этом в осадок. Элементы, остающиеся вместе с хромом в рас-, творе, частью не мешают дальнейшему колориметрическому определению (алюминий, мышьяк, фосфор), частью же najiy-шают ход определения (уран в хроматном методе, ванадий и большое количество молибдена в дифенилкарбазидном методе). Окисление можно вести в горячем растворе перекисью натрия или перекисью водорода с едким натром. Окислять можно также сплавлением с перекисью натрия или со смесью карбоната натрия (10 ч.) и нитрата калия (1 ч.), а некоторые образцы, например, силикаты анализируют, сплавляя даже с одним карбонатом натрия. При сплавлении марганец окисляется до манганата, но последний можно восстановить до гидрата двуокиси марганца, добавляя спирт к горячему раствору сплава. Хром обычно не остается в нерастворимом остатке после выщелачивания содового сплава, и поэтому повторное сплавление не требуется. Следует избегать плавня, содержащего слишком много нитрата, а также слишком высокой температуры при сплавлении, так как это может привести к разъеданию платинового тигля и ввести в раствор немного платины. [c.496]

    При желании можно осадок отфильтровать через бумажный фильтр, промыть горячим раствором аммиака и прокалить в платиновом тигле до MgO. Вначале накал должен быть постепенным. Автор предпочитает этот метод взвешиванию оксихинолята магния. К тому же он имеет то преимущество, что при желании определить марганец, осажденный вместе с магнием, осадок непосредственно может быть растворен в разбавленной серной кислоте для колориметрического определения марганца, тогда как [c.149]

    Затем остаток обрабатывают соляной кислотой и переводят в раствор обычным методом осаждают элементы группы полуторных окислов вместе с марганцем (пользуясь бромом). Тогда R2O3 может быть исправлено на количество марганца, прибавленного в виде перманганата калия при определении FeO. Прокаленные R2O3 после взвешивания сплавляют с пиросульфатом и в полученном растворе определяют железо и титан. Определение фосфора из аликвотной части этого раствора не рекомендуется делать по причине, указанной на стр. 175. Нецелесообразно также определять марганец колориметрически в аликвотной части этого раствора, вычитая добавленный для титрования FeO перманганат, и таким образом по разности получать содержание марганца в самом образце. [c.178]

    Устаиовив условия количественного осаждения индия и галлия, мы перешли к выяснению возможности отделения их от марганца, никеля, кобальта и цинка. Вначале были поставлены опыты по отделению индия. Определение двухвалентных металлов в фильтратах не проводилось, а определялось их количество, остающееся в осадках основных коричнокислых солей индия. Для этого осадки подсушивали и осторожно озоляли в кварцевом тигле. Для определения марганца полученную окись индия растворяли при нагревании в азотной кислоте и определяли марганец колориметрически персульфатным методом. Для определения никеля, кобальта и цинка полученные после прокаливания окиси растворяли при нагревании в соляной кислоте никель и кобальт определяли колориметрически, первый с диметилглиоксимом, второй с нитрозо-Р-солью. Цинк определяли нефелометрически с хинальдиновой кислотой но разработанному нами методу, связывая индий в комплекс лимоннокислым натрием. [c.37]

    Осадок пирофосфата магния следует обязательно проверить на присутствие марганца и в результат определения магния внести соответстБующую поправку. Для нахождения этой подравки прокаленный и взвешенный осадок пирофосфата магния растворяют при нагревании в разбавленной HNO3, раствор разбавляют водой до 50—75 мл и марганец определяют колориметрическим методом. [c.18]

    Определение марганца при небольшом его содержании (до 1 %) выполняют колориметрическим методом. При больших количествах марганца пользуются так называемым арсенит-нитритным методом (или арсенитным). Принцип этого метода состоит в следующем. Сталь или чугун растворяют в смеси фосфорной, сёрной и азотной кислот. Далее окисляют двухвалентный марганец раствором надсернокислого аммония в присутствии соли серебра в качестве катализатора. В этих условиях при окислении получается мар- [c.446]

    Исследования по изучению содержания марганца в почвах были проведены нами и научными сотрудниками А. А. Ширшовым и С. И. Рябовой в 1950—1951 гг. Было определено содержание общего (валового) и обменного марганца в основных типах почв Советского Союза. Для определения общего марганца навеску почвы сжигали со смесью серной и азотной кислот нерастворимый в кислотах остаток отфильтровывали и обрабатывали плавиковой кислотой. Полученный раствор присоединяли к основному раствору, после чего определяли марганец общепринятым колориметрическим методом в виде иона Мп0 4. Для извлечения обменного марганца применяли 1,0 н. раствор KNOз при соотношении почвы к раствору, равном 1 5, и взбалтывании в течение 1 ч. Полученные данные представлены в табл. 88. [c.148]

    Определение в воздухе. Воздух, содержащий соли М., просасывают через алонж, заполненный стеклянной ватой. Сама М. при взаимодействии с диэтилдитиокарбонатом натрия образует окрашенный в желтый цвет комплекс. По интенсивности окраски ведут колориметрическое определение. Метод не специфичен мешают свинец, железо, марганец, цинк (последний в количестве более 3 мг). [c.453]


Смотреть страницы где упоминается термин Марганец, методы определения колориметрический: [c.538]    [c.880]    [c.89]    [c.89]    [c.106]    [c.89]    [c.28]    [c.46]    [c.58]    [c.67]   
Количественный анализ Издание 5 (1955) -- [ c.486 , c.489 ]




ПОИСК





Смотрите так же термины и статьи:

Колориметрический метод определения

Колориметрическое определение

Марганец определение

Марганец определение методом ААС



© 2024 chem21.info Реклама на сайте