Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное присоединение кратным связям

    Нуклеофильное присоединение к активированным кратным связям (1,3-диполярное присоединение). Диазометан как нуклеофил может присоединяться к двойной связи С = С только в том случае, если она поляризована под влиянием какой-либо электроноакцепторной группы. В результате образуются производные гетероциклического соединения пиразолина. В качестве примера приведена реакция с эфиром метакриловой кислоты  [c.471]


    НУКЛЕОФИЛЬНОЕ ПРИСОЕДИНЕНИЕ ПО КРАТНЫМ СВЯЗЯМ И РЕАКЦИИ КОНДЕНСАЦИИ [c.124]

    В настоящей главе рассматриваются реакции присоединения к ДВОЙНЫМ связям углерод — кислород, углерод — азот, углерод— сера и к тройной связи углерод—азот. Исследование механизма этих реакций намного проще, чем процессов присоединения к кратным связям углерод — углерод, описанных в гл. 15 [1]. Большинство вопросов, обсуждавшихся при рассмотрении последних реакций, либо не возникают здесь вообще, либо на них очень легко дать ответ. Поскольку связи С = 0, С = Ы и С = М сильнополярны и положительный заряд локализован на атоме углерода (кроме изонитрилов, см. разд. 16.3), то нет сомнений относительно ориентации несимметричного присоединения к ним нуклеофильные атакующие частицы всегда присоединяются к атому углерода, а электрофильные — к атому кислорода или азота. Реакции присоединения к связям С = 5 встречаются значительно реже [2], и в этих случаях может наблюдаться противоположная ориентация. Например, из тиобен-зофенона РЬ2С = 5 при обработке фениллитием с последующим гидролизом получается бензгидрилфенилсульфид РЬгСНЗРЬ [3]. Стереохимию взаимодействия, как правило, рассматривать не приходится, так как невозможно установить, происходит ли син- или анти-присоединение. При присоединении УН к кетону, например  [c.321]

    Все реакции нуклеофильного присоединения к кратной угле-род-углеродной связи обратимы. [c.50]

    Благодаря подвижности атомов Н у соседнего с карбонильной группой атома С (а-С-атома) К с сравнительно легко, в особенности при катализе к-тами или основаниями, переходят в енольную форму Енолизация или образование енолят-аниона первая стадия мн важных р-ций К с, где они выступают в качестве С-нуклеофильных реагентов К таким р-циям относятся галогенирование по а-С-атому, альдольная и кротоновая конденсации, присоединение к активир кратным связям (см Михаэля реакция) и др [c.325]

    Реакции нуклеофильного присоединения характерны для веществ, содержащих полярные кратные связи С =0, = N, С-= М, N = 0. Нуклеофильные реагенты присоединяются и по кратным углерод-углеродным связям, если последние активированы электроотрицательными группировками. [c.124]

    НУКЛЕОФИЛЬНОЕ ПРИСОЕДИНЕНИЕ К НЕПРЕДЕЛЬНЫМ СОЕДИНЕННЫМ С АКТИВИРОВАННЫМИ КРАТНЫМИ СВЯЗЯМИ [c.133]

    Факторы, оказывающие влияние на реакционную способность кратных связей углерод — гетероатом в реакциях присоединения, аналогичны факторам, действующим в тетраэдрическом механизме нуклеофильного замещения [8]. Если А и (или) В — электронодонорные группы, скорость реакций снижается, а электроноакцепторные заместители способствуют ускорению реакций. Это означает, что альдегиды более реакционноспособны, чем кетоны. Арильные группы оказываются несколько дезактивирующими по сравнению с алкильными вследствие резонанса в молекуле субстрата, который невозможен при переходе к интермедиату  [c.323]


    Наиболее характерной особенностью реакций альдегидов и кетонов является нуклеофильная атака на атом углерода карбонильной группы с последующим присоединением по кратной связи. Реагенты, способные присоединяться по карбонильной группе, можно подразделить па три группы  [c.50]

    Высокополярная карбонильная группа кислот и их производных может подвергаться нуклеофильной атаке. Если для альдегидов и кетонов такого рода атака приводит к присоединению по кратной связи, то в кислотах и их производных R—СО—X) результатом реакции является замещение группы X. [c.95]

    Обычно местом нуклеофильной атаки являются атомы углерода, связанные кратными связями с гетероатомами в таких группах, как С = 0,—С=Ы, >С=М—, а также—N=0,-802. Нуклеофильное присоединение протекает тем быстрее, чем поляризованнее такая двойная связь. [c.218]

    В т. 3 рассматриваются реакции ароматического нуклеофильного и свободно-радикального замещения, а также реакции присоединения к кратным связям углерод—углерод и углерод—гетероатом. [c.4]

    Подобно алкенам, кратная связь в алкинах является активным центро м для ряда химических реакций, что обусловлено наличием я-электронов. В отличие от алкенов для алкинов присоединение может быть не только электрофильным, но и нуклеофильным. [c.127]

    Первоначально происходит присоединение нуклеофила по кратной связи с образованием карбаниона А. Последующие трансформации карбаниона А протекают в соответствии с электронными и пространственными эффектами, в зависимости от условий реакции и наличия нуклеофильного катализа. При этом может реализоваться несколько возможных направлений, что ведет к различным продуктам реакции. Отметим, что применение нуклеофильного катализа имеет общее значение в химии соединений с электрофильными кратными связями и, в частности, широко используется для осуществления димеризации и тримеризации активированных олефинов, кетен-иминов и др. [c.38]

    Изложенные выше принципы проведения нуклеофильного присоединения по кратным связям как последовательности независимых стадий атаки нуклеофила и взаимодействия образующегося карбанионного интермедиата с [c.118]

    Таким образом, в реакции конденсации участвуют карбонильный компонент, имеющий частичный положительный заряд на атоме углерода карбонильной группы, и метиленовый компонент, имеющий активированные атомы водорода в качестве катализатора В используют основание, способное отщепить протон от метиленового компонента. При этом возможно а) нуклеофильное присоединение метнленового компонента к карбонильной группе с образованием спирта, б) нуклеофильное замещение атома кислорода карбонильной группы с образованием алкена и последующее нуклеофильное присоединение к активированной кратной связи этого алкена второй молекулы метиленового компонента. В обще / виде реакцию можно изобразить следующим образом  [c.188]

    Показанная здесь последовательность реакций отражает сборку конечной структуры из трех сравнительно некрупных фрагментов. Ранее мы уже рассматривали подобного рода сборку, основанную на реакиии нуклеофильного присоединения (см. схему 2.31), и нетрудно заметить зеркальную аналогию в этих двух подходах. В самом деле, в обоих случаях речь идет о гете-ролитическом присоединении по кратной связи. Эти реакции, будь то элект-рофильные или нуклеофильные, состоят в присоединении к субстрату двух аддендов противоположного знака, что можно описать следующей общей схемой  [c.130]

    Несмотря на сказанное выше, синтетический потенциал гомолитических реакций огромен, и прежде всего потому, что радикальные частицы относятся к числу высокоактивных интермедиатов, а потому их присоединение по кратным связям протекает достаточно легко и, что немаловажно, в нейтральных условиях. К этому следует также добавить, что подобные реакции малочувствительны по отношению к полярным эффектам в молекуле непредельного субстрата и их можно проводить при наличии самых различных функциональных заместителей, в том числе и таких, присутствие которых исключает саму возможность использования нуклеофильных или электрофильных реагентов. [c.253]

    Реакции литийорганических соединений, в результате которых удается встроить в молекулу нуклеофильный синтон, можно разбить на два типа - реакции присоединения и реакции замещения. К первому типу относятся многочисленные примеры взаимодействия литийорганических реагентов с соединениями, содержащими кратные связи (С=С, С=М, С=0, С=5), ко второму - реакции алкилирования. В обоих типах реакций литийорганическое соединение выступает в качестве нуклеофила, а сами реакции относятся к конструктивным, т. е. приводящим к образованию новых углерод-углеродных связей и создающим скелет молекулы. [c.238]


    Каждая глава разделена на разделы, которые посвящены использованию важнейших типов реакций для получения соединений с данной функциональной группой, таких, как окисление, восстановление, сольволиз, электрофильное и нуклеофильное присоединение по кратным связям и т. п. Внутри раздела имеются подразделы, при- [c.5]

    Представления о я-связи и р -гибрндизации. Цис-транс-изомерия. п-Комплексы при присоединении к кратной связи. Понятие об энергетике реакции, переходное состояние, энергетическая кривая, энергия активации. Гомо- гетеролитический разрыв связи. Индуктивный эффект. Объяснение правила Марковннкова, пероксид-ный Э(]х[)ект Хараша. Нуклеофильность и электрофильность атакующей частицы. Спектры (ПМР, ИК, УФ) олефинов. [c.249]

    Нуклеофильные свойства фосфора станут понятнее, если мы рассмотрим еще несколько примеров, в основном присоединения фосфинов но кратным связям. В результате присоединения фосфина к простым алкенам в присутствии кислоты образуется монозамещенный фосфин. [c.367]

    Сказанное выше является по сути дела всего лишь логическим следствием классической схемы описания процесса нуклеофильного присоединения по кратным связям как двустадийной реакции. Примечательно, однако, что на основе подобного анализа удалось разработать новую и очень продуктивную методологию, применимую для решения широкого круга синтетических задач. Одним из первых примеров успешного использования последовательности независимых стадий присоединения Nu и Е по двойной связи акцеп- [c.117]

    Другим наиболее интересным и важным методом могли явиться реакции перфторолефинов с нуклеофильными реагентами. Особенности химического поведения перфторолефинов заключаются в процессе первоначального присоединения по кратной связи и последующего элиминирования. [c.38]

    Катализаторы межфазного переноса особенно широко используют в реакциях нуклеофильного замещения и присоединения, значительно в меньшей степенн — в реакциях элиминн-рованпя. Описаны отдельные примеры использования этих катализаторов в процессах изомеризации. Ниже последовательно рассмотрено применение межфазного катализа в нуклеофильных реакциях замещения с участием неорганических и органических анионов, в нуклеофильных реакциях присоединения органических анионов по кратным связям (включая последующие превраш,ения продуктов присоединения, например элиминирование и циклизацию), в реакциях присоединеиия дигалогенкарбенов по простым (внедрение) н кратным связям, в реакциях элимнпнрования и некоторых других превращениях. [c.50]

    Карбанионы образуются при нуклеофильном присоединении к кратной углерод-углеродной связи [уравнение (20)]. Для простых алкенов эта реакция крайне редка, поскольку кратная связь слишком обогащена электронами. Однако наличие у двойной связи электроноакцепторных заместителей, таких как NO2, N, OR и OOR, стабилизует образующиеся карбанионы. Генерированные таким путем карбанионы служат интермедиатами в реакциях, имеющих большое синтетическое значение (например, реакции [c.547]

    Реакции нуклеофильного присоединения. Реактивы Гриньяра способны взаимодействовать как нуклеофилы с карбонильными соединениями. Поскольку на атоме углерода в карбонильном соединении имеется значительный дефицит электронной плотности, обусловленный различием в электроотрицательности атомов углерода и кислорода и поляри.чуемостью кратной связи, реактив Гриньяра легко атакует его как нуклеофил, образуя новую углерод-углеродную связь. Так, при взаимодействии с формальдегидом и последующем гидролизе образуются первичные спирты, с остальными альдегидами — вторичные, а с кетонами — третичные спирты  [c.277]

    Нуклеофильное присоединение по кратным связям широко применяется в органическом синтезе. С помощью этой реакции получают соединения с более сложным углеродным скелетом, чем исходные вещества (реакции конденсации), превращают алифатические соединения в карбоцнклические и гетероциклические синтезируют полифункциональные соединения. Реакции нуклеофильного присоединения применяются также для идентификации карбонильных соединений, выделения их из смесей и очистки, [c.124]

    Амины — это продукты замещения в молекуле аммиака атомон водорода алкильными радикалами. Амины — типичные нуклеофилы, способные атаковать электронодефицитные центры, что в конечном итоге приводит к присоединению по кратной связи (в альдегидах и кетонах) или к нуклеофильному замещению (в галоген-алканах, производных кислот, спиртах)  [c.53]

    Среди химических реакций часто встречаются процессы нуклеофильного присоединения (А — addition) по разнообразным кратным связям. Они менее типичны для двойных углеродных связей, имеющих высокую плотность л-электронов, но и в этом классе органических соединений [c.217]

    Перегруппировка Вагнера — Меервейна охватывает реакции, протекающие с перестройкой углеродного скелета при получении олефинов отщеплением аижона, при присоединении по кратным связям и прп нуклеофильном замещении. Общим признаком этих реакций является перемещение алкильного или арильного остатка т образовавшемуся у соседнего углеродного атома катиона ому центру молекулы. [c.876]

    Присоединение литийорганических соединений по кратным уг-.перод-углеродным связям редко осложняет процесс металлирова-иия. В то же время другие группы с кратными связями, например карбонильная или цианогруина, чувствительны к нуклеофильной атаке присоединение литийорганических реагентов к таким группам является обычиым процессом. В случаях, когда необходимо провести металлирование, избегая присоединения к указанным группам, следует применять сильно основные, но слабо нуклеофильные реагенты. Одним нз таких реагентов является трифеиил- [c.12]

    По аналогичной схеме олефины с электроотрицательными з местителями при кратной связи и ацетилены также активнс вступают в реакции нуклеофильного присоединения NuH, кат лизируемые нуклеофилом Nu  [c.446]

    В рассмотренной связанной последовательности первая стадия является межмолекулярной реакцией акцептора Михаэля 90 с карбанионом, генерированном из кетона 91, а вторая — внутримолекулярной реакцией полученного енолятного интермедиата с электрофилом, карбонильной группой того же кетона 91. Уместно задаться вопросом, возможна ли реализация подобной же схемы раздельного присоединения к акцептору Михаэля для тех случаев, когда нуклеофил и электрофил не принадлежат одной и той же молекуле или, иными словами, когда обе стадии присоединения являются межмолекулярными Ответ на этот вопрос нетрудно дать, если на основе приведенного выще рассмотрегшя аннелирования по Робинсону попытаться сформулировать в общем виде те условия, которые необходимы и достаточны для обеспечения такого хода реакции. Очевидно, что для этого, во-первых, необходимо проводить стадию присоединения нуклеофила по кратной связи акцептора Михаэля в отсутствие активных электрофилов (например, протона), способных немедленно гасить образующийся при этом карбанионггый интермедиат. Это, в частности, означает, что реакцию надо проводить в апротонной среде. Во-вторых, необходимо также, чтобы этот интермедиат являлся стабильным, способным существовать в растворе как кинетически независимая частица вплоть до момента, когда в реакционную смесь будет прибавлен внещний электрофил. Естественно, требуется также свести к минимуму возможность реакции образующегося нуклеофильного интермедиата с исходным электрофильным субстратом. Все эти условия могут быть соблюдены путем выбора соответствующих реагентов и условий проведения реакции, и во всех таких случаях реакция Михаэля может быть проведена как последовательность кинетически независимых стадий присоединения нуклеофила (Nu) и электрофила (Е) по связи С=С исходного субстрата или, иными словами, реализована в виде двух последовательных межмолекулярных реакций. [c.117]


Смотреть страницы где упоминается термин Нуклеофильное присоединение кратным связям: [c.291]    [c.122]    [c.167]    [c.5]    [c.450]    [c.323]    [c.324]    [c.117]    [c.162]    [c.181]    [c.162]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.424 , c.429 ]




ПОИСК





Смотрите так же термины и статьи:

Кратная связь

Кратные свя

Присоединение нуклеофильное

Присоединение нуклеофильное Нуклеофильное присоединение

Связи кратные



© 2024 chem21.info Реклама на сайте