Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Регуляция активности

    В строго структурной концепции геном рассматривается как мозаика, составленная из независимых молекулярных программ, планирующих создание отдельных клеточных компонентов. Однако для выполнения этих программ абсолютно жизненно важное значение имеет координация событий. Открытие генов-регуляторов и генов-операторов, а также регуляции активности структурных генов посредством репрессии показало, что геном содержит не только серию программ, но также координированную систему белкового синтеза и средства, позволяющие контролировать их выполнение. [c.175]


    Миозин, будучи АТФазой, относится к числу так называемых энергопреобразующих ферментов, так как при его непосредственном участии осуществляется трансформация энергии химических связей в механическую работу. Для ферментов такого типа характерна тесная связь катализа с конформационными перестройками. За счет этога возможна регуляция активности фермента путем воздействия на группы, не входящие непосредственно в активный центр, а также при воздействии на него веществ, влияющих на конформацию белка. Совершенно очевидно, что субстрат (АТФ) должен в большинстве случаев оказывать защитное действие, стабилизируя структуру в области активного центра. [c.398]

    Активация миозиновой АТФазы может быть также достигнута путем внесения в среду инкубации неполярных или слабополярных органических растворителей, что свидетельствует о важной роли гидрофобных взаимодействий в осуществлении регуляции активности миозина. [c.398]

    Тесное сопряжение р-ций Т. к. ц. с дыхат. цепью, особенно в митохондриях животных, а также особенности регуляции активности индивидуальных ферментов цикла (для больщинства из них АТФ является ингибитором) предопределяют снижение активности цикла в условиях генерирования высокого фосфорильного потенциала (отношения АТФ/АДФ) в клетке, и наоборот-активацию цикла при пониж. фосфорильном потенциале. У большинства растений, бактерий и мн. видов грибов тесное сопряжение цикла с дыхат. цепью преодолевается развитием альтернативных несопряженных путей окисления, позволяющих поддерживать дыхат. активность и активность Т. к. ц. на высоком уровне даже в условиях высокого фосфорильного потенциала. [c.635]

    К рассмотренным типам аллостерической регуляции активности ключевых ферментов под действием клеточных метаболитов следует добавить такой важный тип регуляции, как регуляция соединениями, являющимися индикаторами энергетического состояния клетки (неорганический фосфат, пирофосфат, адениновые нлн другие пуриновые нуклеотиды) этот тип регуляции характерен для путей расщепления, а также для амфиболических путей, в ходе которых могут осуществляться процессы и биосинтеза, и расщепления. — Прим. перев. [c.70]

    Как отмечалось выше, детальное изучение путей биосинтеза возможно только при сотрудничестве представителей многих научных дисциплин. Для более или менее полного описания происхождения и превращений любого природного соединения необходимо выяснение структур его метаболических предшественников и механизмов их взаимопревращений. Кроме того, желательно иметь представление о структуре, механизме действия и механизме регуляции активности каждого из ферментов, а также располагать генетическими картами генов, ответственных за биосинтез этого метаболита и регуляцию всех ферментов. [c.346]


    Другие типы регуляции активности ферментов. Абсолютное количество присутствующего в клетке фермента регулируется временем его синтеза и распада. К регуляторным механизмам могут быть отнесены также конкуренция ферментов за общий субстрат, выключение активности одного из изоферментов (у множественных форм ферментов), влияние концентра- [c.156]

    Регуляция процессов активного транспорта, обеспечивающего поступление подавляющего большинства необходимых прокариотам веществ, происходит на уровне синтеза переносчика и его функционирования. Биосинтез белковых компонентов многих транспортных систем регулируется по типу индукции. Глюкоза, транспортная система которой у большинства прокариот конститутивна, подавляет образование транспортных систем других сахаров и ряда органических кислот путем катаболитной репрессии. Исключение составляют некоторые облигатно аэробные прокариоты, у которых транспорт органических кислот конститутивен, а индуцируемой является транспортная система глюкозы. Избыток субстрата в среде может репрессировать синтез соответствующей транспортной системы. Это особенно характерно для аминокислот. В этом случае регуляция транспорта координирована с регуляцией их последующего метаболизма. Обнаружена также регуляция транспорта по типу отрицательной обратной связи, когда субстрат, [c.124]

    Мембранные рецепторы также обеспечивают межклеточные контакты и формирование тканей (адгезию). Вьщелены специальные тканеспецифичные адгезионные белки, обеспечивающие объединение однотипных клеток в ткань. Важную роль мембранные рецепторы играют также в регуляции активности ионных каналов (электрическая возбудимость, создание мембранного потенциала). [c.301]

    Рецепторная. Рецепторы, интегрированные в плазматическую мембрану, участвуют в восприятии внешних сигналов, передают информацию в клетку и позволяют ей быстро отвечать на изменения, происходящие в окружающей среде. Важную роль мембранные рецепторы играют также в регуляции активности ион- [c.26]

    Регуляция активности ферментов. Отдельные белково-пептидные гормоны, а также адреналин и норадреналин не проникают внутрь клеток. Они регулируют обмен веществ, активность многих внутриклеточных ферментов опосредовано через вторичные передатчики, в качестве которых [c.138]

    Механизм индукции синтеза белка заключается в следующем молекулы индуктора связываются с белком-репрессором, что способствует освобождению гена-оператора и запуску синтеза определенной иРНК (транскрипции). Важную роль в регуляции активности ферментов РНК-синтетаз играют циклический АМФ, уровень которого изменяется под воздействием гормонов, а также отдельные гормоны (стероиды) и некоторые метаболиты. [c.254]

    Итак, современные представления связывают образование вторичной и третичной структуры глобулярных белков с той информацией, которую несет первичная структура белковых цепей в момент биосинтеза белка в клетке Доказательством суш,ествования предпочтительных трехмерных структур является также то, что синтетические полипептиды и белки проявляют биологическую активность (например, АКТГ, инсулин, рибонуклеаза). Но, принимая это положение за основу, нельзя забывать, что в физиологических условиях в процессе выполнения биологических функций могут происходить динамичные обратимые сдвиги в конформации глобулярных белков. Эти сдвиги могут явиться, например, результатом так называемых аллостерических взаимодействий в молекулах ферментов (см. главу Ферменты ). Такая способность к обратимой изменчивости тесно связана с регуляцией активности ферментов, с регуляцией процессов жизнедеятельности на клеточном уровне. [c.157]

    На примере миозиновой АТФазы рассматривается случай химической модификации с помощью некоторых сульфгидрильных реагентов, доказывается участие SH-rpynn в регуляции активности миозина (SH-группы непосредственно в активный центр этого фермента не входят), а также устанавливается важная роль гидрофобных взаимодействий в осуществлении регуляторного влияния на АТФазную активность миозина. Демонстрируется также стабилизирующее действие АТФ на структуру активного центра миозина. [c.398]

    Физиол. значение П. л. до конца не установлено. Считается, что ему принадлежит существ, роль в развитии молочных желез, стимуляции лактогенеза на его ранней стадии, а также в регуляции углеводного и белкового обмена во время беременности и обеспечении нормального роста плода. В процессе беременности концентрация П. л. в крови постепенно нарастает, достигая максимума в позднем периоде беременности и резко падая тотчас после родов. Биол. активность препаратов П. л. качественно сходна также с активностью гипофизарных гормонов пролактина и соматотропина, но проявляется в значительно меиьшей степени (напр., его ростостимулирующая активность примерно в 100 раз ниже, чем у соматотропина). [c.572]

    П. ф. играют важную роль во мн. процессах, происходящих в организме, напр, при оплодотворении, биосинтезе белка, свертывании крови и фибринолизе, иммунном ответе (активации системы комплемента), гормональной регуляции. Во ми. этих случаях фермент расщепляет я субстрате лишь одну или неск. связей (ограниченный протеолиз). Активность П. ф. регулируется на посттрансляц. стадии путем активации их неактивных предшественников (зи-могенов), а также действием прир. ингибиторов ферментов (а -макроглобулина, ai-антитрилсина, секреторного панкреатич. ингибитора и др.). Нарушения механизмов регуляции активности П. ф.-причина мн. тяжелых заболеваний (мышечной дистрофии, аутоиммунных заболеваний, эмфиземы легких, панкреатитов и др.). [c.113]


    Др. тип регуляции активности ключевых ферментов-их хим. модификация (напр., обратимое ковалентное фосфорилирование, гликозилирование). Нек-рые ферменты активны в модифицированном, а ряд ферментов - в немодифици-рованном состоянии. Хим. модификация и превращение модифицированного фермента в исходную форму катализируются разными ферментами, чаще всего аллостерич. природы, к-рые, т. обр., выступают в роли регуляторов активности ферментов. Так, катализирующая фосфорилирование белков, в т. ч. ферментов, цАМФ-зависимая протеинкиназа-тетрамерный белок, состоящий из двух типов субъединиц (полипептидов). Фермент активен лишь после связывания двух молекул циклич. аденозинмонофосфата (цАМФ) с двумя регуляторными субъединицами в результате такого связывания фермент диссоциирует на две каталитически активные субъединицы и димер, с к-рым связаны две молекулы цАМФ. Т. обр., изменение активности ферментов путем их хим. модификации дополняет аллостерич. регуляцию и составляет часть каскадного механизма регуляции. Хим. модификацию ферментов осуществляют также специфич. протеазы, катализирующие ограниченный протеолиз и тем самым инактивирующие ферменты (напр., разрушая апоформы ферментов) или, наоборот, превращающие неактивные проферменты (напр., проферменты пищеварит. протеаз-пепсина и трипсина) в каталитически активные формы. [c.219]

    Из1вестно, что в одном конформационном состоянии фермент лучше связывается с субстратом, чем в другом. Этот простой факт, а также тенденция мономеров белков ассоциировать приводит к ряду интересных эффектов, природа которых долгое время оставалась загадкой для ученых. Сейчас мы знаем, что кооперативные изменения конформации в олигомерных белках лежат в основе многих важных аспектов регуляции активности ферментов и метаболизма. Эти изменения вносят элемент кооперативности в связывание малых молекул (например, кислорода гемоглобином), а также субстратов и регуляторных молекул с ферментами. Вполне возможно, что многие фундаментальные свойства живых организмов непосредственно связаны с кооперативными изменениями в фибриллах, мембранах и других структурах клетки. По этим причинам было бы весьма полезно рассмотреть этот вопрос (в частности, его количественную сторону) более подробно. [c.297]

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]

    Апобелки выполняют не только структурную функцию, но и обеспечивают активное участие комплексов ЛП в транспорте липидов в токе крови от мест их синтеза к клеткам периферических тканей, а также обратный транспорт холестерина в печень для дальнейших метаболических превращений. Апобелки выполняют функцию лигандов во взаимодействии ЛП со специфическими рецепторами на клеточных мембранах, регулируя тем самым гомеостаз холестерина в клетках и в организме в целом. Не меньшее значение имеет также регуляция апобелками активности ряда основных ферментов липидного обмена лецитин-холестеролацилтрансферазы, липопротеинлипазы, печеночной триглицеридлипазы. Структура и концентрация в плазме крови каждого апобелка находится под генетическим контролем, в то время как содержание липидов в большей степени подвержено влиянию диетических и других факторов. [c.576]

    Катализируется эта реакция ферментом киназой фосфорютазы Ь, который также существует как в активной, так и неактивной формах. Активация киназы фосфорилазы Ь происходит подобно активации фосфорилазы, т. е. путем ее фосфорилирования, которое катализируется цАМФ-зависимой протеинкиназой (гл. 13). Важная роль в активации киназы фосфорилазы принадлежит также Са " -кальмодулину — белку, участвующему в регуляции активности многих киназ (гл. 13). Активация протеинкиназы при участии цАМФ, который, в свою очередь, образуется из АТФ в реакции катализируемой аденилатциклазой, стимулируется гормонами адреналином и глюкагоном. Увеличение содержания этих гормонов приводит в результате каскадной цепи реакций к превращению фосфорилазы Ь в фосфорилазу а и, следовательно, к освобождению глюкозы в виде глюкозо-1-фосфата из запасного полисахарида гликогена. Обратное превращение фосфорилазы а в фосфорилазу Ь катализируется ферментом протеинфосфатазой. На рис. 18.6 приведен каскадный механизм мобилизации гликогена. Активация первого фрагмента каскада — аденилатциклазы — в конечном счете активирует распад гликогена и одновременно ингибирует фермент его синтеза — гликогенсинтазу (гл. 20). Следовательно, фосфорилирование гликогенфосфорилазы и гликогенсинтазы приводит к противоположным изменениям их активности гликогенсинтаза ингибируется, а гликогенфосфорилаза активируется, что вызывает повышение содержания глюкозы в мышцах, печени и крови, т. е. происходит быстрое включение реакций, поставляющих энергию. [c.251]

    Известна также аллостерическая регуляция активности гликогенсинтазы Ь. Будучи фосфорилированным, этот фермент мало или полностью неактивен, однако глюкозо-6-фосфат (при высокой концентрации) по аллостерическому механизму в значительной степени повышает активность гликогенсинтазы. Эта форма гликогенсинтазы называется D-формой или зависимой (dependent) формой от присутствия глюкозо-6-фосфата, а дефосфорилированная форма — активной и в отсутствие глюкозо-6-фосфата — 1-формой или независимой (independent) от присутствия этого модулятора. [c.280]

    Регуляция активности белковых посредников транспортных систем может осуществляться путем обратимой ковалентной модификации (например, путем фосфорилирования регулируется активность фосфотрансферазной системы, а также K /Na" - АТФаза) или путем нековалентного взаимодействия с эффекторами. [c.68]

    Простагландинов много, они по строению мало отличаются друг от друга, но функции их разные. Ряд простагландинов усиливают действие аденилатциклазы. Лабильными производными простагландинов являются тромбоксаны, которые участвуют в регуляции активности тромбоцитов. Важно, что аспирин является мощным ингибитором простагландин-синтазы - фермента, участвующего в биосинтезе простагландина из арахидоновой кислоты. Возможно, простагландины участвуют каким-то образом в восприятии боли. Простагландины участвуют в действии гормонов, связанных с кальциевым обменом, и взаимодействуют с рядом ферментов, а также с углеводным обменом, мышечными сокращениями и в механизмах внутриклеточного мембранного транспорта. [c.316]

    Пунктирными линиями обозначены пути регуляции активности ферментов аллосте-рическими эффекторами, а также активности генов (транскрипция и трансляция). Знак минус указан в случае ингибирования и репрессии. Знак плюс - в случае активации и репрессии. Кружки соответствую прямому действию на ферменты, квадратики - репрессии или индукции синтеза ферментов. [c.461]

    Выше мы видели, что АТР и ADP являются модуляторами важных регуляторных ферментов, участвующих в гликолизе, цикле лимонной кислоты и окислительном фосфорилировании АТР действует как отрицательный модулятор, а ADP обычно стимулирует катаболизм углеводов. Вследствие этого любое изменение отношения действующих масс [ATP]/[ADP] [PJ, в норме весьма высокого, может соответствующим образом изменять также и активность некоторых регуляторных ферментов центральных катаболических путей. Имеются, однако, среди этих ферментов и такие, для которых положительным модулятором служит АМР. Чтобы оценить участие в метаболической регуляции наряду с АТР и ADP также и АМР, Даниэль Аткинсон ввел понятие энергетического заряда и использовал его в качестве одной из характеристик энергетического состояния клеток. Энергетический заряд есть мера заполнения всей аденинну-клеотидной системы (т.е. суммы АТР, ADP и АМР) высокоэнергетическими фосфатными группами  [c.541]

Рис. 20-11. Регуляция активности гликоген-синтазы путем ферментативного фосфорилирования и дефосфорилирования. Сама протеинки-наза также существует в двух формах, активной и неактивной их соотношение регулируется гормонами (гл. 25). Рис. 20-11. <a href="/info/284799">Регуляция активности</a> <a href="/info/490257">гликоген-синтазы</a> <a href="/info/629962">путем ферментативного</a> фосфорилирования и дефосфорилирования. Сама протеинки-наза <a href="/info/1633482">также существует</a> в <a href="/info/1696521">двух</a> формах, активной и неактивной их <a href="/info/602801">соотношение регулируется</a> гормонами (гл. 25).
    В 1961 году, основываясь на данных, полученных с помощью тщательного генетического и биохимического анализа образования Р-галактозидазы у Е. oli, Ф. Жакоб и Дж. Моно [45] выдвинули концепцию регуляции активности генов, получившую название теории оперона. Эта теория, а также модель ДНК Уотсона — Крика оказались наиболее плодотворными концепциями молекулярной биологии. [c.70]

    Известны и другие ферментные системы, которые, подобно системе ацетилхолинэстераз радужной форели, акклимированной к 12 °С, состоят одновременно из нескольких изоферментов с различной зависимостью Ки от температуры. Одна из таких систем — изоцитратдегидрогеназа радужной форели. Оказалось, что в популяции можно обнаружить ряд фенотипов, различающихся по этому ферменту, причем влияние температуры на катализируемую им реакцию в большой мере зависит от количественных соотношений между содержанием различных изоферментов в клетках (рис. 91). У особей, имеющих только изофермент Аг, не обнаруживается положительной температурной модуляции, тогда как у особей, обладающих помимо изофермента кг также изоферментами В2 и Сг, отмечается компенсаторное уменьшение сродства фермента к субстрату при температурах выше 10 °С. Можно думать, что особи, имеющие все три изофермента, получают некоторое преимущество, так как активность изоцитратдегидрогеназы не будет у них подвержена таким резким колебаниям в летний период, как у особей, обладающих только изоферментом Аг. У последних, возможно, существует какой-то иной путь регуляции активности этого фермента при изменчивых летних температурах. [c.281]

    Регуляция активности ферментов. На активность ферментов могут влиять многие факторы, в частности концентрация субстрата и кофермента, наличие активаторов и ингибиторов, величина pH среды, температура, водная среда, состояние биологических мембран, химическая модификация структуры фермента путем фосфорилирования, протеоли-зом и др. Наиболее простым регуляторным воздействием является концентрация субстрата и кофермента. Если фермент функционирует в области полунасыщения субстрата, то даже незначительные изменения в его концентрации могут привести к существенному изменению скорости биохимической реакции. Изменение концентрации коферментов НАД, НАДФ, ФАД, КоА и др., а также витаминов, входящих в их состав, тоже влияет на скорость ферментативных реакций. Многообразие ферментативных процессов, скорость которых зависит от наличия витаминов, показано на рис. 104. [c.269]

    Быстрой и "тонкой" регуляцией является так называемая аллостери-ческая регуляция активности фермента посредством веществ, воздействующих на аллостерический центр фермента и изменяющих их конформацию. Как правило, такой фермент расположен в начале метаболического пути. Однако он может ингибироваться конечным продуктом данного обмена при его накоплении или несколькими метаболитами — его аллостерическими регуляторами. Примером может служить ключевой фермент гликолиза — фосфофруктокиназа (ФФК), имеющий около 10 аллостерических регуляторов, от взаимодействия с которыми изменяется его активность. Это такие вещества, как АТФ, АДФ, АМФ, Фн, лимонная кислота, жирные кислоты, а также pH и другие факторы. В состоянии относительного покоя ФФК в скелетных мышцах не активна, так как ингибируется высокими концентрациями АТФ и лимонной кислоты. При интенсивной мышечной деятельности концентрация АТФ снижается, а концентрация АДФ и АМФ повышается. Это активирует ФФК и скорость гликолиза. Когда же баланс АТФ в мышцах восстанавливается, что происходит при улучшении снабжения кислородом, активность ФФК снижается и скорость гликолиза падает. Мышцы переключаются на аэробный механизм энергообразования с постепенным переходом на утилизацию жиров. [c.269]

    Одним из распространенных способов регуляции активности ферментов являются модификации молекул ферментного белка путем фосфорилирования — дефосфорилирования, протеолизного отщепления части белка либо другими воздействиями. Путем фосфорилирования с участием АТФ и Mg , а также дефосфорилирования, катализируемого ферментами (фосфатазой), регулируется активность тканевых липаз, расщепляющих нейтральные жиры, и фосфорилазы, расщепляющей гликоген (рис. 105). Часто процессы фосфорилирования — дефосфорилирования ферментов в цитоплазме клеток связаны с процессами гормональной регуляции посредством цАМФ, Са или других передатчиков действия гормона. [c.269]

    Одним из ферментов Е. соИ, отнесенных к классу адаптивных, была Р-галактозидаза. Этот фермент, как отмечалось в гл. III, катализирует реакцию гидролиза своего естественного субстрата лактозы (фиг. 235), а также других р-галактозидов. Было установлено, что клетки Е. соН содержат активность В-галактозидазы только в случае, если они растут на среде, содержащей лактозу в качестве источника углерода и энергии на среде, содержащей вместо лактозы какой-нибудь другой естественный сахар, клетки Е. соН не синтезируют этого фермента. В 1946 г. Жак Моно начал исследование адаптивного образования Р-галактозидазы у Е. oli. Эти работы в течение последующих 15 лет позволили объяснить регуляцию активности бактериальных генов. В начале своей работы Моно и его [c.477]

    Таким образом, совокупность нескольких регуляторных механизмов позволяет бактериальной глутаминсинтетазе быстро реагировать на изменение условий метаболизма и обеспечивает эффективное использование аммиака для биосинтеза. Наиболее важными метаболитами-регуляторами, по-видимому, являются 2-оксоглутарат и глутамин, соотношение между которыми определяет ход активационного процесса. Дополнительное влияние на эту систему оказывают другие, более отдаленные конечные продукты биосинтеза, а также нуклеотиды и ионы металлов. Кроме того, глутаминсинтетаза некоторых бактерий сама регулирует собственный синтез, а также синтез других ферментов, участвующих в метаболизме азота [2926]. С другой стороны, у млекопитающих нет той системы регуляции активности глутаминсинтетазы, которая свойственна бактериям [3107]. [c.121]


Смотреть страницы где упоминается термин также Регуляция активности: [c.475]    [c.219]    [c.390]    [c.165]    [c.554]    [c.271]    [c.75]    [c.475]    [c.229]    [c.493]    [c.435]    [c.458]    [c.91]    [c.131]    [c.96]    [c.132]   
Молекулярная биология клетки Том5 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2025 chem21.info Реклама на сайте