Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка рекуперация

    НИИогаз и его филиалы разработали и внедрили в промышленность ряд новых прогрессивных методов и аппаратов очистки газов и вентиляционных выбросов от различного рода вредных газообразных химических веществ. Например, на Калининском ПО Химическое волокно внедрен двухфазный (вместо ранее применяемого четырехфазного) адсорбционный метод извлечения сероуглерода из вентиляционных выбросов вискозных производств активными углями, при котором исключаются стадии сушки и охлаждения угля. При этом остаточная концентрация сероуглерода в газе не превышает 0,1 г/м , а рекуперация сероуглерода достигает 99,4%. [c.206]


    В современных условиях более выгодно не только использование кипятильников, но и их дублирование, что позволяет проводить очистку их от загрязнений без остановки колонны. Снижение энергозатрат при уменьшении разности температур в кипятильнике и конденсаторе обусловлено использованием пара меньшей температуры (вторичного), т. е. более дешевого, или съемом тепла (в конденсаторе) при большей температуре для его рекуперации. [c.210]

    Однако поскольку в процессе рекуперации параллельно решаются две задачи— санитарная очистка вентиляционных выбросов и возврат в основное производство рекуперируемого продукта, возник вопрос о том, что же считать целевым продуктом— объем очищенного воздуха или количество рекуперата. Поэтому вопрос об эффективности процесса рекуперации рас- [c.172]

    Если за целевой продукт процесса рекуперации принять объем очищенного воздуха, то критерий оптимальности (4.1.12) в этом частном случае преобразуется в выражение, отвечающее требованию минимизации себестоимости очистки [c.173]

    В связи с этим задача оптимизации промышленного процесса рекуперации бензина сводилась к исследованию процесса с использованием критерия оптимальности с целью определения режимных параметров, обеспечивающих минимальное значение критерия в виде интегральной оценки себестоимости согласно выражению (4.1.20) при поддержании качества очистки рекуперируемого продукта в пределах не ниже заданных. Таким образом, оптимизация процесса была сведена к решению математической задачи поиска экстремума некоторой функции многих переменных в достаточно большом временном интервале (Т = = 4160 ч/год) при соблюдении следующих ограничений концентрация паров бензина в паровоздушной смеси, покидающей адсорбер, не должна превышать предельно допустимую концентрацию (ПДК), установленную для этого вещества >  [c.175]

    Технологическая схема прямой гидратации этилена (рис. 70) состоит из нескольких непрерывно протекающих операций 1) приготовления исходной парогазовой смеси 2) гидратации этилена 3) нейтрализации паров продуктов, образующихся в результате реакции 4) рекуперации теплоты рециркулирующих потоков и 5) очистки циркулирующего газа. Гидратация этилена проводится в контактном аппарате, который для защиты от коррозии выкладывается красной медью. Этилен смешивается с водяными парами и вся смесь направляется в теплообменник и затем в печь, откуда парогазовая смесь при 280°С поступает в гидрататор, который заполнен катализатором на высоту 8,5 м. Время контакта 18—20 с. [c.173]

    В качестве сырья при получении глицерина и гликолей гидрогенолизом углеводов используются главным образом водные растворы (древесные гидролизаты, меласса) в этом случае вопрос о растворителе предопределен и остальные факторы должны подбираться с учетом этого. Когда же сырьем служит сахароза, то в качестве растворителя можно использовать не только воду, но и смесь метанол — вода [16], и другие спиртовые среды. Известно, что медные катализаторы на носителях плохо работают при гидрогенолизе водных растворов углеводов [36], если же использовать в качестве растворителей спирты, то можно применять для гидро-генолиза медно-хромовый катализатор и хромат бария, гидроокись и фторид меди, алюминат меди и другие катализаторы, которые дешевле никелевых [37]. Однако в этом случае возникает необходимость в рекуперации и очистке растворителя, что не требуется для воды. [c.115]


    Очищенный от водорода гелиевый концентрат, пройдя фильтр очистки от пыли Ф-4/4, направляется на рекуперацию тепла в теплообменник Т-29/4. Дальнейшее его охлаждение до температуры не выше 170 С осуществляется в воздушном холодильнике Т-51 и водяном холодильнике Т-40 до температуры не выше 35 °С. [c.169]

    Процесс адсорбции широко применяется в химической и нефтехимической промышленности (для очистки нефтепродуктов, для рекуперации летучих растворителей, для разделения газов и жидкостей, для выделения и очистки мономеров в производстве каучука, синтетических смол и пластмасс, для глубокой осушки газон и т. д.). [c.714]

    Силикагели. Силикагель (ксерогель кремниевой кислоты с хорошо развитой пористой структурой) используется для осушки воздуха и промышленных газов, осушки различных жидкостей, рекуперации паров органических веществ, очистки масел, удаления из нефти смолистых веществ. Применяется в хроматографии, а также как носитель и катализатор для реакций полимеризации, конденсации, окисления и восстановления органических веществ, для разделения радиоактивных изотопов, очистки промышленных сточных вод от ионов различных металлов [29]. Производится промышленностью в виде зерен и шариков в зависимости от пористой структуры может быть двух сортов мелкопористый и крупнопористый. В свою очередь каждый сорт по размерам зерен имеет несколько марок  [c.387]

    Процессы адсорбции щироко применяются для очистки е, осушки газов, для разделения смесей газов и паров, например смесей газообразных углеводородов, для улавливания из парогазовых смесей паров ценных органических веществ (бензола, бензина, ацетона и др.), или так называемой рекуперации летучих растворителей. Посредством адсорбции производят также очистку растворов от примесей. [c.713]

    Отходящие газы охлаждаются и поступают на слои активированного угля, помещенные в цилиндрические реакторы, где проходит каталитическое окисление газа и абсорбция образующегося 50з водой. Полученная кислота вымывается из реактора и концентрируется до 65—70% с использованием тепла входящих газов. Эффективность рекуперации составляет около 95%, и концентрация ЗОг в отходящих газах менее 750 млн- при начальной концентрации 1,5% и 150 млн при начальной концентрации 50г в поступающих на очистку газах 0,3%. [c.122]

    Из газового потока при изменении направления движения на 180 или 90 происходит частичная сепарация твердой и жидкой фазы, улучшаются условия и для диффузии тяжелых углеводородных соединений к катализаторной поверхности перегородок. Степень очистки вентиляционных выбросов достигает 90%, однако с ростом концентрации возрастает и процент степени очистки, и в этом случае вместо сетчатых катализаторных перегородок (5) можно устанавливать пластинчатые теплообменные элементы. В эти теплообменные элементы можно подавать теплоноситель-хладагент для рекуперации тепла процесса окисления и поддержания оптимального температурного режима работы катализатора, нанесенного на его внешнюю поверхность. [c.305]

    Процессы адсорбции широко применяются в промышленности при очистке и осушке газов, очистке и осветлении растворов, разделении смесей газов или паров, в частности при извлечении летучих растворителей из их смеси с воздухом или другими газами (рекуперация летучих растворителей) и т. д. Еще сравнительно недавно адсорбция применялась в основном для осветления растворов и очистки воздуха в противогазах в настоящее время ее используют для очистки аммиака перед контактным окислением, осушки природного газа, выделения и очистки мономеров в производствах синтетического каучука, смол и пластических масс, выделения ароматических углеводородов из коксового газа и для многих других целей. В ряде случаев после адсорбции поглощенные вещества выделяют (десорбируют) из поглотителя. Процессы адсорбции часто сопутствуют гетерогенному катализу, когда исходные реагенты адсорбируются на катализаторе, а продукты реакции десорбируются, например при каталитическом окислении двуокиси серы в трехокись на поверхности платинового катализатора и др. [c.563]

    Методы изучения свойств адсорбентов [1, 2, 7, 8, 13, 14]. Процессы, происходящие на границе раздела газ — твердое тело, имеют огромное практическое значение в промышленности и в лабораторной технике. Наиболее важные из них очистка газов, их рекуперация, разделение смеси газов в препаративных и аналитических целях, газовая хроматография, изучение свойств гетерогенных химических реакций, в частности каталитических. Чтобы правильно выбрать и применить адсорбенты для указанных целей, необходимо знать такие их свойства, как удельную поверхность, пористость, структуру пор, адсорбционную способность. [c.111]

    Уголь как адсорбент применяется для заполнения противогазов, рекуперации растворителей, рафинирования сахара, обесцвечивания многих жидкостей, очистки воздуха в промышленных предприятиях, а также используется в медицине. Адсорбцию активным углем не следует смешивать с активированной адсорбцией. [c.110]


    Адсорбция газов из их смесей. Адсорбция газов из их смесей имеет большое практическое значение, так как условия, при которых адсорбент окружен атмосферой одного какого-нибудь газа, на практику встречаются крайне редко. С адсорбцией газов из их смесей с воздухом приходится иметь дело при рекуперации растворителей, при кондиционировании воздуха, при очистке двуокиси углерода, водорода, аммиака. [c.112]

    Широко распространены в адсорбционной технике углеродные адсорбенты — активированные угли. Их получают из любого карбонизованного сырья, например из ископаемого угля или древесного угля-сырца, при высокой температуре, часто в присутствии так называемых активирующих агентов (воды, двуокиси углерода). При этом выгорают смолистые вещества и часть углеродного материала, развивается пористость, увеличивается удельная поверхность. Активированные угли хорошо адсорбируют неполярные органические вещества они применяются для рекуперации летучих растворителей, осветления растворов, очистки воздуха от вредных газов и т. д. и т. п. [c.231]

    Адсорбция газов и паров широко используется для решения задач очистки от вредных примесей, рекуперации примесей и разделения, анализа смесей. [c.309]

    В настоящее время его широко применяют в промышленности для извлечения из воздуха паров летучих жидкостей (бензола, ацетона, эфиров и т. д.) этим достигается очистка воздуха в промышленных помещениях от вредных веществ и рекуперация (извлечение) ценных растворителей. Активированный уголь применяется также для очистки и осветления жидкостей, для создания высокого вакуума, используется в медицине, в противогазах. [c.85]

    Отметим, что явления адсорбции и капиллярной конденсации находят все более широкое практическое применение. Они используются в промышленности для извлечения ценных веществ из растворов, например из отходящих вод и газов металлургических заводов (рекуперация), а также в целях охраны природы для очистки воздушной и водной сред обитания (см. раздел VI). [c.187]

    До последнего времени наиболее универсальным растворителем являлась вода, что объясняется ее уникальными физико-химическими свойствами, большой химической активностью и сравнительной доступностью. Чтобы предотвратить загрязнение окружающей среды промышленными отходами, необходима самая тщательная очистка воды после выполнения ею роли растворителя, что значительно повышает ее стоимость. На сМену воде приходят другие растворители, в основном органические, рекуперация которых требует меньших энергетических затрат. [c.144]

    Многочисленные практические применения адсорбции могут быть сведены к следующим группам очистка веществ от примесей извлечение и рекуперация веществ гетерогенный катализ фракционирование и анализ многокомпонентных систем (адсорбционная хроматография). [c.137]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]

    Газ из скважин с давлением 13,0—11,0 МПа при 5—16 °С отделяется от капельной жидкости в первичном сепараторе 2, охлаждается обратными потоками в теплообменнике 3, дросселируется до давления 6,8 МПа и направляется в сепаратор 5. От-сепарированный газ из низкотемпературного сепаратора 5 (Р = 6,8 МПа 1 = —22 °С) после рекуперации его холода направляется на ГПЗ, где осушается и очищается (блок осушки и очистки 6) от сернистых соединений до товарных кондиций, а выделенный из газа углеводородный конденсат смешивается с конденсатом, поступающим с промыслов (на рисунке не показано). [c.259]

    Тепло выходящих дымовых газов используют для получения водяного пара в котле-утилизаторе. Это значительно улучшает экономические показатели работы установки. Рекуперация тепла является в настоящее время основной энергосберегающей технологией, внедряемой на установках по утилизации отходов производства. Мелкие твердые частицы выносятся с дымовыми газами и отделяются известными методами (например, с помощью влажной очистки), крупные частицы остаются в псевдо-ожижепном слое теплоносителя (рис. 49). [c.127]

    Использование ультрафильтрации в производстве латексов. В производстве латексов ультрафильтрацию можио применять для следующих целей 1) в технологическо.м процессе как промежуточная ступень между стадиями полимеризации и сушки (для снижения расходов па сушку) 2) для удаления неорганических примесей (очистка от нежелательных солей диафильтрацпей) 3) для рекуперации латекса из промывных вод. В некоторых случаях ультрафильтрация может иримеиять-ся также для удаления мономеров с целью предотвращения образования неприятного запаха и токсичности воды. [c.283]

    Создание отделений глубокой очистки сточных вод и отходящих газов, реализующих оптимальное взаимодействие производства карбамида с окружающей средой в соответствии с сапитарными нормами и обеспечивающими увеличение степепн рекуперации непрореагировавшего сырья. [c.234]

    II ступеней. Охлажденная газовая смесь сжимается шримерно до 3-10 Па, очищается от диоксида углерода в абсорбере 8 и обогащенная свежим аммиаком поступает на стадию синтеза аммиака, жидкая фаза, представляющая собой после абсорбера 8 раствор углеаммонийных солей, поступает в систему синтеза карбамида. В результате использования комбинированной схемы исключается узел очистки газа конверсии от диоксида углерода и повышается рекуперация тепловой энергии, что обеспечивает снижение эксплуатационных и капитальных затрат, а также выбросов тепловой энергии в окружающую среду. [c.239]

    Регенератор выполнен в виде горизонтального каскадно-секционированного аппарата, в котором осуществляется окислительный обжиг закоксованного адсорбента подачей воздуха через воздухораспределительную решетку. В зависимости от степени закоксованности адсорбента реакционная зона аппарата состоит из двух или большего числа секций с кипящим слоем. Секции подразделяются посредством вертикальных переточных перегородок, устанавливаемых над воздухораспределительной решеткой. Их высота выбирается в зависимости от требуемой высоты кипящего слоя. Для снятия избыточного тепла выжига кокса и регулирования оптимального температурного режима, реакционная зона оснащена батарейными водяными теплообменниками, омываемыми плотным движущимся слоем адсорбента. Снимаемый теплообменниками избыток тепла используется для получения водяного пара. Дымовые газы регенерации, очищенные в мультициклоне и устройствах тонкой очистки от пьшевидных частиц адсорбента, поступают на рекуперацию тепла и далее на улавливание диоксида серы и только затем выбрасываются в атмосферу. [c.23]

    Абсорбционный метод основан на различной растворимости газов в жидкостях воде, водных растворах щелочей или кислот, водных растворах химических окислителей. Качество абсорбентов определяют растворимость в нем основного извлекаемого компонента и ее зависимость от температуры и давления. От растворимости зависят все главные показатели процесса условия регенерации, циркуляции абсорбента, расход тепла на десорбцию газа, расход электроэнергии, габариты аппаратов. Абсорбционные методы гаироко применяются в промышленности. Достоинством их является рекуперация ценных продуктов, а к недостаткам относят многостадий-ность процессов постоянной регенерации сорбентов и необходимость дополнительной очистки выделенных продуктов. Опыт работы промышленных установок показал, что эти методы позволяют достигнуть значительного эффекта очистки отходящих газов, однако они не решают проблему полного их обезвреживания. В тех случаях, когда газовые выбросы представляют собой многокомпонентную смесь органических веществ, очистка усложняется очистные сооружения достигают больших размеров, а это затрудняет их раз- мещение и обслуживание. [c.166]

    Поскольку для каталитической очистки газов в стационарном режиме с учетом 75% рекуперации тепла отходящих газов температура адиабатического разогрева газов должна б1ыть не менее 150°С, при обезвреживании отходов с низким содержанием органических веществ необходим подвод топлива, нанример природного газа. Расход природного газа для исходных смесей с температурой адиабатического разогрева О, 10, 50, 100, 150°С составляет соответственно 4,88 4,55 3,25 1,53 и 0,0 м на 1000 м газообразных отходов. При исиользовании метода каталитического обезвреживания в нестационарном режиме расход топлива необходим только для переработки отходов с температурой адиабатического разогрева ниже 20°С. [c.179]

    Выбор того или иного метода очистки от токсичных газов и паров производится с учетом конкретных условий производства. Экономичность очистки возрастает при использовании отходов производства в качестве очистных реагентов (абсорбента, адсорбента, катализатора), а также при регенерации ценных веществ из отходящих газов, например рекуперации паров бензина или других растворителей, регенерации ртути и других металлов и т. п. Как правило, концентрации примесей в промышленных выхлопах малы, а объемы очищаемых газов велики, ноэтому для их обработки сооружают сложные и громоздкие очистные установки, которые пока еще недостаточно рентабельны. [c.237]

    Существенным фактором, влияющим на эффективность системы рекуперации тепла, является отложение зольных элементов на наружной поверхности труб теплообменных агрегатов. В результате этого увеличивается аэродинамическое сопротивление дымоходного тракта и повышается давление в топочном пространстве печи, приводящие к необходимости остановки для очистки межтрубных зон от отложений. Отложения на 92-96% состоят из минеральных веществ, легко и полностью растворяющихся в воде. На трубах котла-утилизатора отложения представляют собой плотную твердую массу, на трубах воздухоподогревателя и экономайзера - порошкообразную массу, напоминающую по виду цемент. Несмотря на внешнее различие отложений, их химический состав практически одинаков. Более высокая прочность отложений на трубах котла-утилизатора объясняется воздействием высоких температур 1200-1400 °С, вызывающих оплавление отложений. На змеевике воздухоподогревателя, где температура газов [c.82]

    Процесс мокрой очистки газов, детали которого еще недостаточно ясны, испытывался фирмой Велман — Лорд на тепловой электростанции в Гэнноке фирмы Тампа Электрик Ко. [32]. Сообщается, что при очистке удаляется 90% ЗОг и 50з и летучая зола, оставшаяся после электрофильтров. После дальнейшей переработки чистый оксид серы (IV) отгоняется в стриппинг-колонне и может быть использован для производства серной кислоты или рекуперации серы. [c.132]

    Адсорбция газов и паров широко применяется для извлечения отдельных компонентов из газовых смесей и для полного разделения смесей. Н. Д. Зел1шскнй впервые предложил использовать активные угли для поглощения отравляющих газов. Активные угли применяют для рекуперации растворителей ацетона, бензола, ксилола, сероуглерода, хлороформа и других, выбросы которых разными промышленными предприятиями оцениваются в сотни тысяч тонн. Несмотря на малые концентрации их в отходящих газах (несколько грамм в1 м ), степень извлечения при адсорбции на активных углях составляет до 95—99%. Десятки миллионов тонн диоксида серы выбрасываются в атмосферу промышленными предприятиями разных стран мира тепловыми электростанциями, предприятиями черной и цветной металлургии, химической н нефтеперерабатывающей промышленности и др. Для улавливания диоксида серы применяют адсорбционные установки, заполненные активными углями и цеолитами. Процесс адсорбции применяют также для очистки воздуха от сероуглерода, сероводорода и т. д. [c.145]

    Испытания аппарата показали, что надежное обезвреживание отхо-ДЯ1ЦИХ газов до санитарных норм на обоих типах катализаторов обеспе-чивается при расчетной производительности термокаталитической ко-ло зны 2 ООО нм7ч, при этом пропускная способность аппарата в ходе экспериментов доводилась до 4 ООО нм ч. Степень очистки отходящего газа, соответствующая санитарным нормам, обеспечивалась при темпе-рагуре окисления в слое катализатора 380-450°С. Содержание кислорода Б отходящих газах, поступающих в катализаторную зону - зону окисления органических примесей - было в пределах 1,8 ,1% об. Темпера-тура очищенного отходящего газа на выходе из зоны рекуперации была в пределах 240-330°С, свидетельствуя о недостаточной поверхности теплообменной камеры реактора. Следовательно, представляется дальней-ш 1Я возможность разработки конструкций реакторов с большим коэф-фр циентом рекуперации тепла. [c.93]

    Этот метод используется при разделении больших количеств исходной смеси. Иа выходе колонки помещают коллектор фракций, с помощью которого можно получать очень чистые (99,999%) индивидуальные вещества. Приемники коллектора связаны с программирующим устройством так, что отбор фракций происходит автоматически при регистрации пика того или иного компонента на ленте самописца. Методы препаративной газовой хроматографии широко применяются в промышленности, чаще всего для разделения двухкомпонентных систем, например для рекуперации паров летучих растворителей, для осушки воздуха, очистки мономеров и при других процессах. [c.281]


Смотреть страницы где упоминается термин Очистка рекуперация: [c.66]    [c.400]    [c.235]    [c.238]    [c.93]    [c.142]    [c.72]    [c.73]    [c.10]    [c.400]    [c.277]   
Фенольные смолы и материалы на их основе (1983) -- [ c.89 , c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Рекуперация



© 2024 chem21.info Реклама на сайте