Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовые смеси охлаждением

    Газовая смесь, охлажденная до 420-450 С, направляется в конвертор С-2111 для окисления SOg до SO3. Конвертор представляет собой вертикальную башню, в которой размещен фильтр для поступающей в него газовой смеси и три слоя катализатора — пяти- [c.302]

    Газовая смесь, охлажденная до минус 40—45° С, проходит последовательно два теплообменника теплообменник теплой ветви 1 и теплообменник холодной ветви 2, где охлаждается азото-водородной смесью до минус 178° С, Затем газовая смесь поступает в нижнюю часть конденсатора 3 метана, где охлаждается до минус 190° С за счет испарения фракции окиси углерода, поступающей из нижней части промывной колонны 4. При этом в конденсаторе конденсируется метан. Из конденсатора газовая смесь поступает в нижнюю часть промывной колонны 4, где очищается от окиси углерода, метана и аргона. После промывной колонны 4 газовая смесь содержит (в зависимости от давления) 85—92 объемн.% водорода, 8—15 объемн, % азота, следы окиси углерода, кислорода и аргона. [c.401]


    Технологическая схема совместного синтеза уксусной кислоты и уксусного ангидрида изображена на рис. 121. Свежий очищенный воздух, подаваемый воздуходувкой 1 под давлением, немного превышающим атмосферное, смешивают с рециркулирующим газом, содержащим пары ацетальдегида. Полученная смесь [7—9% (об.) кислорода, 25—30% (об.) ацетальдегида. 1%(об.) уксусной кислоты, остальное — азот] поступает под распределительную решетку реактора 2 и барботирует через катализаторный раствор, захватывая с собой пары продуктов. Паро-газовую смесь частично охлаждают водой в холодильнике 3 и возвращают полученный конденсат в реактор, чтобы в нем был постоянный уровень жидкости. Затем проводят дополнительное охлаждение в холодильнике 4 и сатураторе 5 — туда вводится ацетальдегид и за счет его испарения из газа конденсируются остатки продуктов. [c.408]

    ЮТ путем охлаждения выходящих газов и подачи их в башню, орошаемую кислотой. Это выгодно для смеш,ения равновесия и благоприятно изменяет кинетику реакции в последуюш,их слоях катализатора, перед которыми газовую смесь нагревают. Выходящие газы охлаждают и направляют в абсорбер 50з. В большинстве развитых стран сейчас имеются стандарты на допустимые загрязнения воздуха, соблюдение которых требует использования или установок с двойной абсорбцией, или дополнительных скрубберов в установках с одинарной абсорбцией. [c.240]

    При низкотемпературном процессе конверсии лигроин или другие углеводороды проходят над слоем обогащенного никелем катализатора при температуре 450—500°С и подвергаются взаимодействию с паром, в результате чего образуется газовая смесь, содержащая приблизительно 21% двуокиси углерода, 25 % водорода, 53% метана и минимальное количество окиси углерода (состав рассчитан на сухой газ). Однако из-за того, что реагирует только часть пара, добавляемая к лигроину на первой стадии разложения, газ остается все еще разбавленным непрореагировавшей влагой в соотношении 1 1. Йз реактора газ уходит при температуре около 550°С, поэтому перед процессом метанизации он должен быть охлажден. [c.181]

    Нефть, добываемая на промыслах, содержит в растворенном виде легкие, газообразные в нормальных условиях углеводороды. Чтобы сохранить их, нефть по выходе из скважины немедленно отделяют от газа в специальных аппаратах — газоотделителях. Отделяющийся газ увлекает при этом с собой и некоторое количество наиболее легких бензиновых фракций. Для выделения последних газовую смесь подвергают сжатию и охлаждению. При этом бензин отделяется в виде конденсата (газовый бензин), а осушенный газ поступает в газовую сеть. [c.133]


    Холодильный цикл показан на рис. 9-21. Исходная газовая смесь сжимается (1—2) турбокомпрессором а и охлаждается (2—3) в теплообменнике в. После охлаждения газ делится на два потока, один из которых направляется в ожижитель д, где охлаждается и конденсируется (3—5—6). Далее следует дросселирование (6—7) и сбор конечной жидкости О в сборнике ожиженного газа ж. Вторая часть потока охлажденного в теплообменнике газа (большая часть) направляется на расширение (3—4) в турбодетандер г. Охлажденный после турбодетандера газ направляется в качестве холодильного агента в ожижитель д и далее в теплообменник в для охлаждения сжатого га (4-1). [c.227]

    VI сепаратор 14. Ъ колонне И ступени происходит дальнейшее разложение карбамата до аммиака и диоксида углерода и образование водного раствора карбоната и бикарбоната аммония. Из нижней части сепаратора 14 выходит 70% -ный раствор карбамида, а из верхней — парогазовая смесь, содержащая аммиак, диоксид углерода и пары воды, которая поступает в нижнюю часть ректификационной колонны 12. Газовая смесь из колонны 12 охлаждается в холодильнике-конденсаторе 15 vl в виде раствора аммонийных солей подается в нижнюю часть промывной колонны 2. Раствор карбамида из сепаратора П ступени 14 собирается в сборнике 16 vl подается на упаривание последовательно в вакуум-аппараты I и П ступеней при температуре 140°С и давлении 0,003 МПа. Полученный плав карбамида концентрацией около 0,998 мае. дол. поступает через сборник плава 17 в грануляционную башню 1S и распыляется в ней. Образовавшиеся гранулы при температуре около 70°С транспортером 19 подают на операции классификации, охлаждения и упаковки. Выход карбамида в расчете на диоксид углерода составляет около 95%. [c.274]

    Свежий этилен из хранилища 1 и возвратный этилен из отделителя низкого давления 9 подаются в смеситель 2, куда поступает кислород. Газовая смесь сжимается в компрессоре первого каскада 3, смешивается в смесителе 4 с возвратным этиленом из отделителя высокого давления 8 и сжимается в компрессоре второго каскада 5 до давления 150—300 МПа. Пройдя маслоотделитель 6, газ подается в трубчатый реактор полимеризации 7. Из него продукты реакции поступают в отделитель высокого давления 8, где из них выделяется часть не вступившего в реакцию этилена. Он охлаждается в холодильнике 12 и направляется в смеситель 4. Полиэтилен в виде расплава из отделителя 8 подается в отделитель низкого давления 9, где от него при давлении 1,5-10 Па отделяется остаток этилена, который после охлаждения в холодильнике 11 поступает на смешение со свежим этиленом. Расплавленный ПЭ поступает на грануляцию в гранулятор 10, в котором продавливается через [c.390]

    Очищенная таким способом газовая смесь поступает под давлением 30 ат и при температуре 20° в блок предварительного охлаждения (теплообменники 10 и 13). Газ сперва охлаждается с 20 до 0 в противоточном теплообменнике 10, через который пропускают холодную метано-водородную фракцию (о происхождении этих холодных газов сказано ниже). При этом конденсируются водяные пары и конденсат отделяется во влагоотделителе 11. Из влагоотделителя газ поступает через распределительный вентиль 12 в один из сдвоенных переключающихся теплообменников 13. Когда один аппарат работает, другой подвергается регенерации. Во время процесса теплообмена на стенках трубок теплообменника образуются отложения льда, которые нужно периодически удалять оттаиванием. После каждого теплообменника установлены два параллельных переключающихся фильтра назначением их является задерживать твердые частицы, увлекаемые охлажденным газом. Эти фильтры тоже подвергают периодическому нагреванию для удаления накопившегося льда. В теплообменниках 13 хладагентом служит метано-водородная фракция, которая поступает с температурой минус 100° и под давлением 1,6 ат из верхней секции конденсационной части колонны 17. Из теплообменников 13 метано-водородная фракция переходит в теплообменник 10 и затем собирается в газгольдере. Вторым хладагентом служит сам пирогаз, выходящий из фильтров. При этом он снова нагревается до минус 3° и затем попадает в колонну 15, работающую под давлением 30 ат куб колонны нагревают водяным паром до 140°, а верхнюю часть (дефлегматор) охлаждают жидким аммиаком, имеющим температуру минус 53°. В этой колонне, флегму для которой берут из куба колонны 17 , пирогаз разделяется на легкие и тяжелые компоненты. Из верхней части колонны 15 отбирают газы, не конденсирующиеся при данных условиях. Ниже приве ,ен их состав, % объемн.  [c.160]

    Адсорберы с движущимся слоем поглотителя. Принцип работы адсорберов этого типа был указан в главе П (см. стр. 105). Исходная газовая смесь поступает в колонну под распределительную тарелку / (рис. XIV-7), представляющую собой трубную решетку с направленными вниз патрубками. Через патрубки газовая смесь поднимается в адсорбционную зону /, где взаимодействует с движущимся слоем активного угля, охлажденного в трубах холодильника 2. В зоне / поглощаемые компоненты извлекаются углем, а непоглощенная часть смеси (легкая фракция) отводится через штуцер, расположенный под распределительной тарелкой <3. [c.576]


    Струевой реактор. Через термостатированный реактор с постоянной скоростью пропускается газовая смесь реагентов, прореагировавшая смесь поступает в аналитическое устройство (хроматограф, масс-спектрометр и т. д.) или охлажденные ловушки. Перед вводом в реактор реагенты нагреваются до температуры реактора. [c.271]

    Коксовый газ является хорошим исходным продуктом для технического получения водорода. С этой целью газовую смесь подвергают очень сильному охлаждению, причем все ее составные части, кроме На, сжижаются, а водород остается газообразным и может быть поэтому легко отделен. [c.319]

    В газовую смесь, охлажденную дс температуры 600—650°С, добавляют небольшое количество водорода и смесь подают в контактный aппaJpaт 2, где образуется вода, а двуокись азота восстанавливается до окиси азота Затем смесь проходит через котел-утилизатор 5, и в холодильнике-конденсаторе 4 из газа конденси-,руется водяной пар, при этом образуется 5—6%-ная ННОз, которую выводят из системы [c.142]

    Схема работы нри винилировании представлена на рис. 154. Спирт и 1% щелочи насосом подают в нагретый до 150—180° реактор нод давлением, равным давлению в реакторе. Одновременно в реактор поступает разбавленный азотом ацетилен. Выходящая из верха реактора газовая смесь захватывает с собой эфир, кипящий при значительно более низкой температуре, чем спирт (этилвиниловый эфир кинит при 35°, метилвиниловый эфир нри 8°). Путем глубокого охлаждения гаа освобождается от эфира и возвращается в реактор. Эфир очищается нерегопкой. Небольшая часть газов циркуляции постоянно отводится из установки и заменяется свежим газом. [c.249]

    Газовая смесь выходит из колонны синтеза с объемной долей МНз 0,20. После охлаждения газа и коплен-сапд1н аммиака содержать NH3 сжижается до 0,04. Какая доля аммиака сжижема (Растворимость газа в жидком аммиаке не учитывается.) [c.153]

    Синтев аммиака — экзотермическая реакция, стремящаяся к равновесию. Выходящая из реактора газовая смесь содержит большие количества непрореагировавших газов синтеза. Эта смесь после отделения основной части аммиака рециркулирует в основной поток газов синтеза. Из образовавшегося газового потока путем глубокою охлаждения выделяется оставшийся аммиак, и смесь с низким содержанием аммиака направляется в колонну синтеза. Так как исход- [c.334]

    Во многих случаях газовую смесь после хлорирования разбавляют воздухом или инертным газом, чтобы избежать образования взрывоопасной смеси водорода с хлором или кислородом устанавливают постоянный контроль состава газов после хлорирования аппаратуру для хлорировдния перед началом процесса продувают азотом хлораторы оснащаются эффективными средствами охлаждения реакционной массы, автоматическими регуляторами ведения процесса и средствами противоаварийной защиты. Хлор-производные, образующие с воздухом взрывоопасные смеси, хранят под азотом. [c.115]

    Прореагировавшая газовая смесь с температурой около 400°С отводится из нижней части колонны синтеза 14 в котел-утилизатор //на охлаждение до 200°С. Дальнейшее охлаждение газовой смеси до 20°С происходит в теплообменнике 10, водянохм холодильнике первичной конденсации и холодном газовом теплообменнике 5. По выходе из теплообменника 5 циркуляционная (прореагировавшая) газовая смесь смешивается со свежей азотоводородной смесью, и цикл повторяется. Жидкий аммиак выделяется в первичном 8 и вторичном 6 сепараторах, проходит магнитные фильтры 7 и направляется в сборники жидкого Эхммиака 12 и 13. При понижении давления до 2—2,5 МПа из жидкого аммиака выделяются растворенные газы, которые называют танковыми. В установке улавливания паров аммиака из танковых газов получают аммиачную воду. Жидкий аммиак из промежуточного сборника поступает на склад. [c.62]

    Насадка конденсационной колонны (рис. 161) состоит из трубчатого теплообменника 4, расположенного в верхней части корпуса 5, и сепаратора 6 с фарфоровыми кольцами Рашига 7. Газовая смесь поступает в колонну через верхнюю трубу 1 и попадает в межтрубное пространство теплообменника 4, где охлаждается примерно до 20° С. Далее по-цептральной трубе газ поступает в испаритель жидкого аммиака, дополнительно охлаждается и возвращается в колонну. При входе в колонну газ резко теряет скорость и изменяет направление движения, в результате чего капли жидкого аммиака, сконденсированные при охлаждении, отделяются от потока газа, оседают на стенках корпуса н стекают в нижнюю часть колонны. Далее газ [c.212]

    Контактные газы после пиролиза быстро охлаждают ( закаливают ), Закалка преследует цель заморозить равновесную систему, полученную при высокой температуре, и предотвратить разложение ацетилена, неизбежное при медленном охлаждении контактных газов. Реактор термоокислительного пиролиза (рис. 209) состоит из камер смешения 1, сгорания 2 и закалки 3. Метан и кислород, нагретые предварительно до 700°С, поступают в смесительную камеру /, из которой газовая смесь попадает в камеру сгорания 2, газы движутся в каналах камер1э1 с большой скоростью, что предохраняет ее от обратного проскока пламени в смесительную камеру. Для-интенсификации процесса горения непосредственно в горелки подается добавочное количество кислорода (10%). Газы, выходящие из горелок, попадают в камеру закалки 5, где их охлаждают водой, которую впрыскивают через сопла 4 в кольцевом коллекторе. Процесс пиролиза протекает в камере горения и частично в камере закалки. [c.223]

    За счет частичного сжигания метана при помощи особых горелок температура газовой смеси повышается, в результате чего на никелевом катализаторе при температуре 940—1000° завершается конверсия метана. Проконвертированный аз охлаждается вспрыскиванием воды до 400—425° и поступает на конверсию СО, которая также протекает в присутствии катализатора. В результате этого образуется дополнительное количество водорода, а СО превращается в СОа. Горячая газовая смесь проходит теплообменник, где охлаждается, подогревая при этом карбонатный и медноаммиачные растворы. Охлажденный до 110° газ орошается горячим раствором карбоната калия и медноаммиачным раствором для удаления СО2. Очищенный газ после дополнительного охлаждения водой подается на синтез аммиака. [c.109]

    Бивон - Свлвктокс (БСР/селвктокс) [40]. Первая ступень процесса аналогична всем восстановительным схемам и включает смешения газов, поступающих на очистку, с продуктами неполного сгорания топливного газа, восстановление и гидролиз сернистых соединений до Н25 в каталитическом реакторе при температуре 300°С. Газовая смесь подвергается двухступенчатому охлаждению и подается на вторую стадию - каталитическое окисление сероводорода в серу. Селективное окисление ведется на катализаторе селектокс при температуре 177...377°С без образования [c.174]

    Разработан комбинированный способ гидрогенизации нефтяных остатков, при котором исключаются сброс давления и стадия дистилляции между жидкофазной и парофазной ступенями. Между этими ступенями помещают два отстойника, в которых собирается твердый остаток, а иаро-газовая смесь без охлаждения поступает далее на стационарный катализатор. Получаемый продукт содержит 32% бензина, 56% дизельного топлива, 12% тяжелого масла. При замене во [c.50]

    II ступеней. Охлажденная газовая смесь сжимается шримерно до 3-10 Па, очищается от диоксида углерода в абсорбере 8 и обогащенная свежим аммиаком поступает на стадию синтеза аммиака, жидкая фаза, представляющая собой после абсорбера 8 раствор углеаммонийных солей, поступает в систему синтеза карбамида. В результате использования комбинированной схемы исключается узел очистки газа конверсии от диоксида углерода и повышается рекуперация тепловой энергии, что обеспечивает снижение эксплуатационных и капитальных затрат, а также выбросов тепловой энергии в окружающую среду. [c.239]

    Ввиду большого расхода реагентов и образования отходов солей этот способ был вытеснен дегидратацией уксусной кислоты. Последнюю можно осуществить двумя путями межмолекулярной дегидратацией или через промежуточное образование кетена. В обоих случаях получаемая газовая смесь содержит очень реакционноспособные уксусный ангидрид или кетен и воду, которые могут лепсо превращаться при охлаждении обратно в уксусную кислоту. Поэто- [c.200]

    Конденсация. Все методы конденсации, или конденсационные методы, сводятся к тому, что частицы предельно раздробленного вещсства, т. е. вещества, находящегося в растворенном состоянии или в виде пара, когда его молекулы разобижены, подвергаются укрупнению, соединяясь друг с другом и образуя более крупные агрегаты. Процесс коггденсации вещества в состоянии отдельных молекул (или нонов) может произойти только в том случае, если это вещество пересыщает раствор или газовую смесь. Таким образом, кондеисациоиный процесс образования гетерогенной дисперсной системы происходит в две стадии 1) образование пересыщенного раствора или пара и 2) собственно конденсация из пересыщенного раствора или пара. Конденсационные методы отличаются от дисперсионных тем, что раз начавшийся процесс конденсации идет далее самопроизвольно и сопровождается отдачей энергии. Все усилия при искусственном иолучении гетерогенных дисперсных систем иосредством метода конденсации сводятся к получению пересыщенного раствора или пара, что может быть достигнуто двумя способами 1) понижением растворимости или давления пара путем охлаждения или замены растворителя или 2) образованием [c.189]

    Узел конденсации. В узле последующего охлаждения и конденсации происходит практически полное сжижение всех сопутствующих гелию компонентов, в результате чего получается газовая смесь, состоящая из 80-90 % гелия, 3-5 % водорода, остальное азот и иногда следы неона. Особенности технологии производства гелия на данном этапе предопределяют необходимость применения противоточной конденсации с целью уменьшения потерь гелия из-за растворимости его в сжиженных газах. Связано это с тем, что жидкость, стекающая в куб конденсатора, контактирует с входящим в нее бедным гелием газом, а в прямоточных конденсаторах она близка к равновесию с уже обогащенным гелием потоком на выходе из аппарата. Недостатком противоточных кондесаторов является необходимость использования низкой скорости парогазовой смеси, [c.161]

    В современных контактных аппаратах, с целью приближения температуры к оптимальной, газовая смесь проходит последовательно несколько слоев контактной массы, между которыми в специальных теплообменниках проп.чводят охлаждение газа. Используют и аппараты, в которых охлаждение газа после коптактировапия в отдельных слоях осуществляют введением холодного воздуха, по при этом происходит разбавление газа. [c.78]

    Змеевиковый холодильник (рис. 1.64), предназначенный для охлаждения азотоводородной смеси, состоит из четырех кольцевых секций /, включенных параллельно по ходу газа и воды. К наружной и внутренней обечайкам кожуха 5 каждой секции крепятся кол-лeкtopы 3 для подвода и вывода из секций охлаждающей воды. Коллекторы секций смещены один относительно другого на 90°. Газ подводится в каждую секцию сверху по вертикальному коллектору 2 и распределяется по 14 приваренным к нему плоскоспиральным змеевикам 4, расположенным один над другим. Охфжденная газовая смесь выводится по такому же коллектору у внутренней обечайки кожуха. Между змеевиками установлена спиральная перегородка из листовой стали, сообщающая воде направление движения по спирали вдоль витков змеевиков про-тивоточно газу. [c.63]

    С равно 2,4 моля на 1 г/атом углерода. Газовая смесь подвергается высокотемпературной конверсии в трубах печи и при температуре 800-850°С поступает в котел-утилизатор 10. Дальнейшее охлаждение газа происходит в кипятильнике II и холодильнике 12. Далее газ поступает на очистку от СО2 Вся извлеченная двуокись углерода рециркулирует с помощью компрессора 9 в трубчатую печь. Для обеспече- [c.264]

    Блок-схема хроматографической установки, используемой для определения удельной поверхности адсорбентов методом тепловой десорбции, представлена на рнс 13. Потоки гелия и азота нз баллонов 1 и 2 подаются в определенном соотношении в смеситель <3, и которого газовая смесь поступает в сравнительную камеру детектора 6 и далее в колонку 8 с исследуемым адсорбентом, в которой прн охлаждении происходит адсорбция азота. Из колонки газоиая смес[1 поступает в измерительную камеру детектора 7. Детектор фиксирует изменение состава газовой смеси в результате адсорбции. Сигнал детектора Iосту-нает на самопишущий потенциометр 5. [c.50]

    Включают хроматограф и с помощью редукторов иа баллонах / и 2 устанавливают необходимую скорость подачи газовой смеси. При отсутствии охлаждения хромато1 рафической колонки через сравнительную и измерительную камеры детектора проходит газовая смесь одинакового состава, поэтому вначале перо самопишущего потенцисшетра записывает нулевую линию (рис. 14). [c.50]

    Хроматографическую колонку с исследуемым адсорбентом помещают в сосуд Дьюара с жидким азотом, продолжая проиускат[ через нее газовую смесь. При охлаждении колонки в результате адсорбции азота и изменения состава газовой смеси г[сро потенциометра начинает отклоняться от нулевой линии. Смещение пера потенциометра происходит до тех пор, пока сорбент полностью не будет насыщен азотом при данной концентрации азота в газовой смеси. Равиовесие считается установленным, когда иеро самописца снова отмечает нулевую линию. Затем сосуд е жидким азотом удаляют, и происходи полная десорбция азота с иоверхности адсорбента ири комнатной температуре. При этом самописеи, вычерчивает кривую десорбции (см. рис. 14). [c.50]

    Расчет зоны П. Газовая смесь после зоны I поступает в зону П, где происходит ее охлажденне и конденсация аммиака. Согласно предыдущему начальная температура газа 0 = 100°С, конечная —=30 С. За начальную температуру охлаждающей среды принимаем среднюю летнюю температуру <2 = 20°С. Конечная температура воды должна быть выбрана с таким расчетом, чтобы температура стенки со стороны воды не превышала 50 С принимаем <2 = 40° С. [c.169]

    Технологическая схема синтеза углеводородов при атмосферном давлении в газовой фазе представлена на рис. 7.1. Очищенный синтез-газ нагревается в подогревателе (2) и поступает в реактор (1). После реактора парогазовая смесь охлаждается в оросительном холодильнике 4 оборотной водой. При охлаждении выделяется конденсатное масло, которое в смеси с водой выводится снизу холодильника. После отделения масла газовая смесь проходит установку адсорбции (5), где активным углем извлекают газовый бензин и газоль (смесь углеводородов СрСе с небольшим количеством СО, СОз, NS, Нг). Адсорбер периодически продувается паром получаемым с сепараторе (3). Парогазовая смесь направляется на разделение. Синтез-газ после адсорбера (5) проходит подогреватель (6) и поступает в реактор второй ступени (7). Далее процесс аналогичен первой ступени. [c.108]

    В США Процесс проводили в больших реакторах диаметром 4880 мм с высотой слоя катализатора от 458 до 1830 мм. Отлагавшийся на катализаторе уголь удаляли с помощью пара каждые 2 часа это позволяло избежать продолжительных продуваний системы от воздуха при регенерации катализатора выжиганием. Молярное отношение пара к бутилену равнялось 15 1—20 1. Превран1,ение за один проход составляло 30%, Селективность процесса была равна 65%, так что в выходящих нз реактора газах содержалось около 20% дивинила. Газовую смесь, выходившую из реактора, немедленно подвергали резкому охлаждению. Выход дивинила составлял 0,55—0,6 кг из 1 кг бутиленов, вступивших в реакцию. В настоящее время в США при работе в крупном промышленном масштабе на новых катализаторах, описанных Кирби [13], получают выходы дивинила 70% и даже выше. Дивинил выделяли из газовой смеси поглощением медными растворами (стр. 213). [c.210]

    По нааначанию циклы охлаждения можно подразделить на рефрижераторные, ожижительные и газоразделительные. Рефрижераторные циклы предназначены для охлаждения и термостатирования различных объектов при низких температурах. Ожижительные установки находят применение в процессах получения жидких кислорода, азота, водорода, метана и других газов. Гаэоразделительные установки используют для выделения, например, из воздуха или природного газа их компонентов. Иногда подвергают ректификации предварительно ожиженную газовую смесь. [c.59]

    Аммиак сгорел в кислороде в замкнутом сосуде без катализатора. После окончания реакции и охлаждения смеси объем газа составил 8,96 л (нормальные условия). Эту газовую смесь пропустили через избыток раствора ортофос-форной кислоты, при этом объем газа уменьшился на 3,36 л (нормальные условия). Определите массу шгния, который мог бы прореагировать с оставшимся после прохождения смеси через кислоту газом. Рассчитайте объем аммиака в исходной смеси с кислородом. Ответ 18 г 14,56 л. [c.296]

    Для проведения более энергоемких процессов, таких как сварка швом, резка более толстых диэлектрических материалов и металлов, требуются более мощные лазеры. Для этой цели применяют газовые лазеры на азоте или углекислоте. Такие лазеры могут выполняться на мощности в луче при работе в непрерывном режиме в сотни и тысячи ватт (до 10—12 кВт). Для того чтобы газ при ЭТОМ не нагревался, его непрерывно прокачивают через лазер. Только маломощные газовые лазеры, работающие в импульсном режиме, могут выполняться отпаянными с замкнрым объемом. Обычно в газовую смесь добавляют гелий, способствующий ее охлаждению благодаря своей высокой теплопроводности. [c.383]


Смотреть страницы где упоминается термин Газовые смеси охлаждением: [c.65]    [c.134]    [c.170]    [c.552]    [c.181]    [c.68]    [c.578]    [c.552]    [c.264]    [c.381]   
Основные процессы и аппараты химической технологии Часть 2 Издание 2 (1938) -- [ c.583 ]




ПОИСК







© 2025 chem21.info Реклама на сайте