Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Удерживаемый углеводородов

    Цеолиты группы В, представителями которой являются, например, левинит и морденит, уже совершенно не удерживают углеводородов и хорошо адсорбируют лишь такие газы, как кислород и азот. Диаметр внутренних пор цеолитов этой группы составляет 3,8 А. [c.331]

    Полиэтиленовые порошки непригодны в качестве носителей, потому что они отнюдь не инертны по отношению к многим соединениям. Такой носитель значительно удерживает углеводороды и может растворять углеводородную жидкую фазу. [c.159]


    Метод адсорбции на активном угле пригоден лишь для отбензинивания не содержащих сероводорода природных газов, так как в порах активного угля сероводород неизбежно окисляется присутствующим кислородом в элементарную серу, которая прочно удерживается углем и может быть удалена лишь специальными растворителями. Применение непрерывного адсорбционного процесса (процесс гиперсорбции) для фракционирования газообразных углеводородов по их молекулярным весам будет рассмотрено подробнее в следующем томе. [c.31]

    Поэтому давление можно применять с целью удлинения нагревания углеводородов среднего молекулярного веса, удерживая их в жидкой фазе в зоне разложения. [c.270]

    Из раствора в парафиновых углеводородах кристаллический бензол выпадает при более высокой температуре, чем из раствора в ароматических. Бензины, содержащие смесь углеводородов различных классов, и по способности удерживать бензол в растворенном состоянии также занимают промежуточное положение [11. Добавление к бензину ароматических углеводородов понижает температуру кристаллизации бензола. [c.319]

    Во время длительных лабораторных испытаний этого способа установлено, что вводимые в установку взрывоопасные углеводороды полностью удерживались адсорбентом во время теплого дутья, а затем все они, за исключением ацетилена, выносились азотом во время холодного дутья. Полупромышленные испытания регенераторов со слоем адсорбента показали, что потери кислорода составляют 0,5—0,75% количества вырабатываемого кислорода. [c.122]

    Если твердая фаза состоит из углеводородов различных гомологических рядов и их растворимость в охлаждаемой жидкой фазе такова, что в момент кристаллизации выделяется более одного типа углеводородов, то твердая фаза образует либо смешанные кристаллы, либо нечетко выраженную кристаллическую форму. При достаточном избытке жидкой фазы, способной при данной температуре удерживать в растворе все группы твердых углеводородов кроме одной, по мере охлаждения раствора остальные группы могут кристаллизоваться на решетках первично образовавшихся кристаллов. Если сохраняется некоторое оптимальное соотношение между выделяющимися углеводородами, то форма кристалла соответствует первично образующейся. В идеальном случае на решетке первично образующихся кристаллов накапли- [c.128]


    Ионообменная очистка основана на способности ионообменных смол (ионитов) удерживать те загрязнения, которые в растворенном состоянии диссоциируют на ионы. Иониты получают путем полимеризации и поликонденсации органических веществ они представляют собой твердые гигроскопичные гели, не растворимые в воде и углеводородах. В высокомолекулярной пространственной решетке ионита закреплены фиксированные ионы. Заряды этих ионов компенсируются зарядами противоположного знака, принадлежащими подвижным ионам (противоионам), расположенным в ячейках решетки и способным к обмену с ионами раствора электролита. Иониты, содержащие активные кислотные группы и подвижные катионы, способные к обмену, называются катионитами, а иониты с активными основными группами и подвижными анионами — анионитами. [c.125]

    ИСХОДНОГО катализатора, не соблюдается. Для образцов катализаторов с металлами вычисленная кислотность выше, чем фактическая. Отсюда авторы [239] делают вывод, что при добавлении окиси металла некоторая доля протонов удерживается от участия в реакции. Количество этих каталитически неактивных протонов определяли по разнице между экспериментально найденной и вычисленной кислотностью. Найдено, что 0,5 моль окиси хрома связывает 1 моль протонов 1 моль окиси меди связывает 2 моль протонов и 0,5 моль окиси натрия — 3 моль протонов. Указанные авторы считают, что изученные добавки металлов промотируют крекинг в направлении образования кокса, водорода и низших углеводородов в следующей последовательности (по возрастанию активности) натрий<цезий<хром<медь. [c.173]

    Хотя применение молекулярного сита позволяет разделить ие-углеводородные компоненты, а также метан, этан, этилен, полностью анализ газа на этом адсорбенте провести нельзя, так как он прочно удерживает этиленовые углеводороды. Содержание водорода определяют на молекулярных ситах, применяя в качестве газа- [c.53]

    Механизм действия. Действие диспергентов основано на их поверхностно-активных и растворяющих свойствах [9, 10]. Продукты глубокого окисления нестабильных и высокомолекулярных углеводородов и неуглеводородных соединений находятся в топливе в виде коллоидного раствора до тех пор, пока он не разрушается под действием условий окисления [6, 11, 12]. Присадки, добавляемые к топливу, удерживают эти продукты в коллоидном состоянии, препятствуют их коагуляции и осаждению и часто переводят в раствор уже выпавшие осадки. Механизм действия таких присадок, как правило, заключается в диспергировании нерастворимых продуктов или удержании их в растворенном состоянии. [c.139]

    Присадки, действующие по механизму пептизаторов, удерживают коллоидные частицы в растворе, адсорбируясь на их поверхности. Кроме того, они помогают содержащимся в топливе естественным пептизаторам — смолистым веществам и высокомолекулярным ароматическим углеводородам, заменяя их по мере их окисления. Однако диспергенты не могут предотвратить этого [c.139]

    Была предложена [97 ] методика распределительной хроматографии с использованием карбамида в качестве неподвижной фазы для разделения парафиновых углеводородов нормального строения, входящих в состав твердых нефтяных парафинов. Основой дл] разработки методики послужило принципиальное положение, заключающееся в том, что хроматографическое распределение происходит вследствие различия коэффициентов распределения компонентов разделяемых смесей между двумя несмешивающимися жидкостями, одна из которых прочно удерживается твердым носителем [99], а вторая — свободно перемещается по колонке. Благодаря многократности перераспределения компонентов смеси с различной растворимостью по длине колонки в первую секцию колонки выносятся наиболее растворимые в подвижной жидкой фазе компоненты разделяемой смеси. Твердой фазой служил карбамид, фиксированный на твердой фазе жидкостью — [c.71]

    Отмечено, что углеводороды с изолированными ароматическими кольцами удерживаются на модифицированном силикагеле сильнее, чем углеводороды с конденсированными циклами. [c.62]

    В табл. 17.1 приведены характеристики удерживания двух изомерных трехко.тьча-тых и четырех изомерных четырехкольчатых ароматических углеводородов с конденсированными ядрами (ПАУ). В случае жидкостной хроматографии на поверхности с полярными группами — на гидроксилированной и на аминированной-поверхности силикагеля при элюировании гексаном (см. рис. 16.4 и табл. 17.1) сильнее удерживаются углеводороды с ангулярным расположением конденсированных колец. [c.309]

    Из литературных данных известно, что некоторые адсорбенты, применяемые при определении аофальто-омолистых веществ, в частности окись алюминия, очень прочно удерживают углеводороды масел, а также способствуют образованию асфальтенов. [c.75]

    Если полностью гидрированный когазин II обрабатывать двуокисью серы и кислородом при одаовременном освещении актиничным светом в описанном ранее лабораторном аппарате, то, как и в случае циклогексана, через некоторое время жидкость мутнеет и начинают выделяться сульфоновые кислоты. Они оседают на дно как вещества с большим удельным весом, чем углеводороды. Однако незначительное количество сульфокислот удерживается на стенках трубки и частично там разлагаются под воздействием ультрафиолетовых лучей в черные смолистые вещества, которые делают постепенно невозможным дальнейшее проникновение света в трубку, та-к что в результате реакция прекращается. [c.488]


    Освобожденный от сульфоновых кислот углеводород направляют обратно в реактор 1, а метанольпый экстракт подвергают дальнейшей переработке. Поскольку 20—25%-ный раствор алкилсульфоновых кислот (среднее число атомов углерода равно 14—15) может гидро-тропно удерживать еще 4—6% углеводородов, послед гие следует удалить экстракцией легкокипящими растворителями, например патро-лейным эфиром, легким бензином,, циклогекоаном, изооктаном и т. п. Ароматические или хлорированные углеводороды (бензол, толуол, четыреххлористый углерод, хлороформ) для этой цели не подходят. [c.490]

    Для характеристики низкотемпературных свойств нефтепродуктов введены следующие условные показатели для нефти, дизельных и котельных топлив — температура помутнения для карбюраторных и реактивных топлив, содержащих ароматические /глеводороды, — температура начала кристаллизации. Метод их определе1тия заключается в охлаждении образца нефтепродукта в стандартных условиях в стандартной аппаратуре. Температура появления мути отмечается как температура помутнения. Причиной помугнения топлив является выпадение кристаллов льда и парафи — новых углеводородов. Температурой застывания считается темпе — )атура, при которой охлаждаемый продукт теряет подвижность. Потеря подвижности вызывается либо повышением вязкости нефтепродукта, либо образованием кристаллического каркаса из крис — аллов парафина и церезина, внутри которого удерживаются за — устевшие жидкие углеводороды. Чем больше содержание парафи — тов в нефтепродукте, тем выше температура его застывания. [c.86]

    Давно было известно, что асфальтены могут осаждаться лигроином, который удерживает сопутствующие углеводороды в растворе. Это разделение лежит в основе современного метода анализа асфальтенов, впервые открытого Хольде [114]. Изменение свойств лигроина влияет на полноту осаждения и качество осаждаемого вещества. Систематизированные данные об этих наблюдениях позволяют различать осаждающее действие алкановых углеводородов с низким молекулярным весом в жидкой фазе по сравнению [c.286]

    Повидимому здесь имеют место одновременно и действие поверхности и капиллярные явления. Поверхность пористых тел привлекает и удерживает мопомолекулярный слой газов или паров, между тем как в капиллярных промежутках конденсируются пары углеводородов. В результате адсорбция паров протекает более энергично, нежели газов, потому что последние, находясь при температуре значительно более высокой, чем йх критическая температура, подвергаются только действию иоверхпости. [c.143]

    В таком варианте первоначальный вид активного центра не во( нроиз-водится, кислотный центр Льюиса продолжает удерживать водород, влияние центра Льюиса иа центр Бренстеда ослабевает, а следовательно, теряются исходные кислотные свойства катализатора. С этим, но-видимому, и связана быстрая потеря катализатором акт11вности, выражающаяся в резком увеличении содержания незамещенных углеводородов в продуктах алкилирования и сильном пониясе1гии выходов. [c.349]

    Как объясняется устойчивость твердых веществ, построенных из отдельных молекул Почему Вт2, 12 и все органические вещества не являются газами при комнатной температуре Какие силы удерживают молекулы углеводородов, входящих в состав бензина, в жидком состоянии Чем объяснить существование кристаллов сахара, если между его молекулами нет ни ковалентных, ни ионных связей Устойчивость молекулярных кристаллов становится понятной, если разобраться в природе слабых сил, называемых вандерваальсовым взаимодействием и водородными связями. [c.601]

    При высаживании асфальтенов из раствора наблюдается увлечение вместе с ними некоторого количества углеводородов и смол, растворимых в данном растворителе при температуре высаживания, причем часть из них захватывается механически, а часть удерживается внутри агрегированных мицелл вследствие частичной сорбции вместе со смолами. Дрисутствие углеводородов в мицеллярной оболочке можно объяснить дисперсионными силами, возникающими между молекулами смол и углеводородо-в. На поверхности мелкодисперсных твердых частиц асфальтенов смолы сорбируются таким образом, что полярная часть их молекул обращена в сторону ядра коллоидной мицеллы, а неполярная — в сторону дисперсионной среды. В то же время вследствие упорядоченности неполярных частей молекул смол и влияния дисперсионных сил между ними встраиваются молекулы углеводородов. Так как в остатках нефтей содержится больше смол, чем необходимо для пептизации асфальтенов, вероятно образование поли-молекулярных мицеллярных оболочек, в результате чего углеводороды прочно удерживаются между чередующимися молекулярными слоями полярных соединений (смол). Извлечь эти углеводороды можно, полностью разрушая молекулярные оболочки коллоидных мицелл растворением смол многократной коагуляцией или отмывкой. Выше КТРг вследствие ограниченной растворяющей способности пропана по отношению к смолам происходит их выделение из раствора. Выделяющиеся смолы растворяют полициклические ароматические углеводороды и, таким образом, относительно раствора углеводородов выполняют роль селективного растворителя, несмешивающегося с пропаном. [c.67]

    Коллоидная стабильность смазок лишь отчасти связана с синерезисом, поэтому эти свойства нельзя отождествлять. Чем выше загуш аюш ая способность загустителя и чем больше его в смазке, тем лучше связана в ней жидкая фаза. Высокой коллоидной стабильностью при хранении отличаются углеводородные смазки — гомогенные сплавы минеральных масел с твердыми углеводородами (церезином и парафином), распределенными в смазках в виде тонких, мономолекулярных слоев — кристаллов (см. рис. 12. 1, ж). мазки, загуш енные мылами, менее стабильны, так как структурный каркас не так плотен, а кристаллическая решетка мыл значительно менее масло- мка, чем кристаллическая решетка углеводородов механически задерживаемого масла в каркасе мыл относительно больше, а удерживается оно хуже. Кроме того, мыльные смазки больше подвержены процессам старения, следствием которых являются структурные изменения и связанное с ними выделение масла. [c.662]

    Эти соединения прочно удерживаются на поверхности, но нахо дятся в квазиравновеси.и с газофазным водородом. Предполагают, что такие углеродсодержащие соединения представляют собою полимерные образования. Скорость реакций замедляется, так как они могут протекать на непокрытых участках платины. При высоких темпе-турах (>477 °С) и атмосферном давлении углеводороды адсорбируются диссоциативно и необратимо. Происходит многослойное обра-  [c.54]

    Отбеливающие глины, в частности гумбрин, обладают способностью поли-меризовать на своей поверхности молекулы смолистых веществ, а также удерживать некоторые высокомолекулярные углеводороды, фенолы и другие поверхностно-активные соединения [209]. Поэтому ракомендуется пользоваться силикагелем или окисью алюминия, у которых эта способность выражена несколько слабее. [c.471]

    В 1971 г. в ФРГ впервые в промышленном масштабе был реализован процесс адсорбционного разделения ксилолов парекс , разработанный фирмой Universal Oil Produ ts (США). Процесс основывается на различном взаимодействии компонентов разделяемой смеси ароматических углеводородов s с адсорбентом. Наилучшим адсорбентом для этой цели являются цеолиты типа X и Y в калиевой и бариевой формах [26] при массовом соотношении Ва К от 5 до 35. На указанных адсорбентах удерживается и-ксилол, и при последующей десорбции он выделяется в очень чистом виде. В процессе Парекс применяется вытеснительная десорбция с использованием толуола или диэтилбензола. Десорбент от целевого продукта отделяется ректификацией. Адсорбция проходит в жидкой фазе при 150—180 °С и 0,8—1 МПа в двух адсорберах (рис. 63), работающих как единый аппарат, на стационарном слое адсорбента [27—29]. Аппарат разделен на 24 секции, между которыми установлены тарелки для распределения входящих и выходящих потоков. [c.255]


Смотреть страницы где упоминается термин Удерживаемый углеводородов: [c.73]    [c.19]    [c.19]    [c.311]    [c.164]    [c.218]    [c.339]    [c.274]    [c.275]    [c.75]    [c.386]    [c.72]    [c.315]    [c.72]    [c.88]    [c.117]    [c.325]    [c.13]    [c.48]    [c.52]    [c.81]    [c.64]    [c.118]   
Курс газовой хроматографии (1967) -- [ c.356 , c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Абсолютные удельные удерживаемые объемы углеводородов на разных неподвижных фазах при различных температурах

Относительные удерживаемые объемы бициклических ароматических углеводородов на разных неподвижных фазах при различных температурах

Углеводороды относительные удерживаемые

Углеводороды удерживаемые объем

Углеводороды удерживаемые объемы

Углеводороды, анализ абсолютный удельный удерживаемый объем

Удерживаемые объемы бициклических ароматиче- I ских углеводородов относительно нафталина

Удерживаемые объемы галоидных производных углеводородо

Удерживаемые объемы углеводородов относительно я-пентана

Удерживаемый объем терпеновых углеводородов

Хлорпроизводные углеводородов удерживаемые объемы



© 2024 chem21.info Реклама на сайте