Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюмосиликаты как катализаторы кислотно-основные свойства

    Другая область широкого применения кластерной модели — исследование кислотно-основных свойств окисных катализаторов. В качестве параметров, характеризующих льюисовскую кислотность и основность, используют энергии хемосорбционной связи с активным центром молекул, обладающих донорными или акцепторными свойствами, энергии НСМО и ВЗМО кластеров, реже заряды па атомах металла и кислороде. На основе их анализа удается предсказать возрастание донорно-акцепторной силы центров с увеличением степени координационной ненасыщенности центрального иона, изменение кислотных свойств в ряду окислов металлов, влияние щелочных и щелочноземельных металлов на кислотно-основные и каталитические свойства алюмосиликатов. [c.134]


    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами они активны как в реакциях гидрирования-дегидрирования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных соединений нефтяного сырья [119, 136]. Однако каталитическая активность молибдена и вольфрама недостаточна для разрыва углерод-углеродных связей. Поэтому для осуществления реакций крекинга углеводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно-ситовые свойства. Если же кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учитывать и специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмосиликате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводородов сырья, в то время как на цеолите — реакции последующего более глубокого превращения с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отнести к поли-функциональным. [c.250]

    Кислотно-основные свойства поверхности контакта играют, очевидно, решающую роль в механизме активации сероводорода. Поскольку подвижность кислорода поверхности глинозема, алюмосиликата, углерода очень низка, именно активация сероводорода на этих контактах обеспечивает высокую скорость его окисления. Строго говоря, мягкое окисление сероводорода (с образованием серы) правильнее считать окислительным дегидрированием, в котором роль кислотно-основных центров катализатора состоит в ослаблении связей S—Н в молекуле, достаточном для взаимодействия протонов с кислородом газовой фазы (или физически адсорбированным). При рассмотрении реакции окисления сероводорода с этих позиций становится понятным, почему в ней в отличие от реакции окисления водорода, СО, аммиака, SOj такие характеристики катализаторов, как наличие d-электронов, полупроводниковые свойства, электропроводность, наличие свободных d-орбиталей, парамагнетизм не играют существенной роли. [c.273]

    Следует подчеркнуть, что наряду с далеко идущей аналогией гомогенных и гетерогенных кислотно-основных катализаторов последние, в общем случае, вследствие отсутствия растворителя и объемной жидкой фазы имеют ряд особенностей. Каждая из названных групп кислотных катализаторов (стр. 53) имеет свою каталитическую специфику, обусловленную различиями в физико-химических свойствах и строении. В частности, для твердых оксидных систем характерна возможность одновременного присутствия центров разной кислотной силы и определенного геометрического расположения этих центров. Для галогенидов металлов, в особенности переходных, типично комплексообразование с вытекающей отсюда способностью действовать на реакции, вовсе не ускоряемые обычными минеральными кислотами. Особыми чертами обладают апротонные твердые кислоты. Скорость ряда реакций, катализируемых алюмосиликатами, определяется не общей кислотностью катализатора, а только концентрацией обмениваемого водорода [61]. Реакция же дегидратации спиртов идет, видимо, только за счет апротонной кислотной составляющей — окиси алюминия [74]. [c.56]


    Существенное влияние на результаты крекинга оказывают содержащиеся в сырье азотистые соединения. Обладая высокой основностью, они прочно адсорбируются на кислотных активных центрах и блокируют их. Ядами для алюмосиликатных катализаторов являются азотистые оонования аммиак и алифатические амины на активность алюмосиликатов не влияют При одинаковых основных свойствах большее дезактивирующее воздействие на катализатор оказывают азотистые соединения большей молекулярной маосы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Влияние различных соединений азота, добавляемых к декалину в количестве 0,11% N, на глубину крекинга (в %) в заданных условиях характеризуется следующими данными без добавки — 41,9 с аммиаком и метиламином — 42 с диамиламином — 42,3 с пиридином — 26,8 с индолом — 25,1 с а-нафтиламином — 21,8 с хинолином — 8,5 с акридином — 8,2. [c.228]

    Формула катализатора для риформинга нафты усложняется большой склонностью высших углеводородов к образованию углерода. Термодинамика реакций образования углерода обсуждалась на стр. 89—91. Углерод может образовываться различными путями — либо гомогенно при крекинге углеводородов, либо каталитически на активной поверхности никеля или на носителе катализатора. Каталитическое действие на крекинг углеводородов таких кислотных окислов, как алюмосиликаты, хорошо известно в нефтяной промышленности. Подобный эффект получается для амфотерных окислов, а также для некоторых компонентов, обычно обладающих основными свойствами, но при высоких температурах и парциальных давлениях, пара приобретающих некоторые кислотные характеристики. [c.99]

    Ранее было показано, что в процессе взаимодействия гидроксильных групп гидрогеля создаются активные участки поверхности [2]. Решающую роль в создании активных участков (центров катализа) играют химические свойства гидроксилов, составляющих катализатор. Их гидроксильные группы, неравноценные по характеру проявления кислотных и основных свойств, в смежном положении в силу стремления к нейтрализации могут реагировать с образованием химически ненасыщенной связи между атомами разнородных окислов. В структурно-химическом отношении возникновение указанной связи объясняется тем, что взаимодействие неравноценных гидроксилов происходит с большего расстояния между ними, чем необходимо при образовании нормальной (насыщенной) связи в кристаллической решетке алюмосиликата. [c.379]

    Наибольшую активность проявил катализатор с 10% СггОз. Добавление небольших количеств щелочи ингибирует изомеризацию, а добавка алюмосиликата активирует ее. Отмечена довольно четкая корреляция между изомеризующей активностью и кислотными свойствами алюмо-хромовых катализаторов (их характеризовали количеством адсорбированного хинолина) [3]. При более высоких температурах основными становятся реакции дегидроциклизации, дегидроизомеризации и крекинга. Так, при 620°С из метилциклопентана получили 12% бензола при общем превращении сырья примерно 50%. Добавляя в сырье 1% бензола (для подавления крекинга), почти такой же выход ароматических углеводородов при большей селективности ( 30%) получили при 570 °С. [c.97]

    Первая группа твердых кислот, которая включает природные глины, имеет наиболее длинную историю. Уже в 20-х годах этого века было выполнено большое число работ по исследованию каталитических свойств некоторых из пих. Совсем недавно были начаты исследования цеолитов. Основными составляющими первой группы твердых кислот являются окислы кремния и алюминия. Хорошо известные твердые кислотные катализаторы - алюмосиликаты - отнесены к четвертой группе, которая также включает многие смешанные окислы, обладающие, как это было недавно установлено, кислотными свойствами и каталитической активностью. К пятой группе относятся неорганические соединения - окислы, сульфиды, сульфаты, нитраты и фосфаты металлов. Многие из них обнаруживают типичную селективность, свойственную катализаторам. [c.11]

    Большое количество экспериментальных данных, накопленных за последнее время, привело к созданию концепция о неоднородности каталитической и адсорбционной активной поверхности [3 . Анализ этих данных показывает, однако, что в большинство доказанных случаев неоднородной поворхности изучались процессы на поверхности катализаторов и адсорбентов, которые, но распространившейся за последнее время терминологии [4], относятся к электронному (окислительно-восстановительному) тину. Данные о неоднородности поверхности но кислотно-основным свойствам почти отсутствуют в литературе. Исключение представляют лишь косвенные указания о наличии на поверхности алюмосиликатов кислотных центров разной каталитической активности [5—8], например, ионов водорода Н+ и алюминия А " " . В то же время кинетика ряда каталитических процессов на кислотных поверхностях подчиняется уравнениям, выведенным в предположении об однородной новерхности (см., например, [9]). [c.304]


    Известно, что расщепляющая активность катализаторов гидрокрекинга определяется числом и силой кислотных центров. Результирующая эффективность, как отмечалось выше, определяется сочетанием гидрирующей и расщепляющей функций. Носителями кислотных свойств цеолитсодержащих катализаторов в основном являются В-центры, число и сила которых зависят как от количества цеолита в катализаторе, так и от способа его предварительной обработки. Аморфные алюмосиликаты обладгдат как В-, так и L-центрами. Катализаторы, содержащие металлосиликаты в качестве расщепляющего компонента, содержат в основном L-центры (табл. 7.6). [c.181]

    К процессам второго класса относятся реакции кислотноосновного взаимодействия крекинг, гидратация, различные случаи полимеризации, изомеризации, конденсации и др. В этих реакциях имеет место промежуточное кислотно-основное взаимодействие реагирующих веществ с катализатором, т. е. переход протона от катализатора к одному из реагирующих веществ или, наоборот, от реагирующего вещества к катализатору. При последующих стадиях каталитической реакции протон перемещается в обратном направлении и катализатор восстанавливает свой состав. Типичными катализаторами для них являются твердые тела, обладающие кислотными (алюмосиликаты, А12О3, ЗЮа, ЗпОа) и основными (ВаО, Ag20) свойствами. Чаще всего — это ионные кристаллы (диэлектрики) или аморфные непроводящие твердые вещества (гели). [c.471]

    Для изучения неоднородности поверхности но кислотно-основным < войствам дифференниально-изотопным методом из имеющихся в нашем распоряжении и исследованных ранее [2] катализаторов были выбраны образцы ВеО, MgO, СаО, алюмосиликата и сили] агеля, имеющие наибольшую у7),ельну Ю поверхность. Первые оныты были проведены с меченым п-крезолом, имевшимся в нашем распоряжении ранее других меченых веществ и обладавшим небольшой удельной радиоактивностью 46 имп/мин-мг ВаСОд. п-Крезо .1 был применен для изучения свойств поверхности окислов щелочного характера СаО и MgO, а также окиси бериллия — ВеО, поверхность которой обладает амфотерными свойствами. В табл. 1 приведены данные, по изучению адсорбции и-крезола на окиси бериллия, имевшей удельную поверхность 103 м /г и полученной прокаливанием Be O, нри 600°. Опыты приведены в таблице в порядке их проведения. В последней графе таблицы для удобства нодсч( та [c.306]

    Приведенные данные показывают, что для рассмотренных катализаторов убывание кислотных и нарастание основных свойств наблюдается в ряду алюмосиликат>фосфат бора>фосфат кальция>фосфат строиция>фосфат лития. [c.48]

    Различие между этими катализаторами может быть связано с различием в их кислотно-основных бифункциональных свойствах. Ми-соно и Ионеда [ 156] связывают преимущественное образование одного из изомеров при изомеризации бутена-1 на сульфате металла с электроотрицательностью катиона. Танабе и сотр. [ 157] показали, что мутаро-тация a-D-тетраметилглюкозы в бензоле, которая, как полагают, протекает по механизму кислотно-основного бифункционального катализа, рассмотренному выше, катализируется сульфатами металлов, алюмосиликатами и т.п. [c.165]

    Кислотные свойства цеолитов и катализаторов на их основе определяют разными методами. В частности, имеется индикаторный метод, описанный в работах [34—36 . Другие методы заключаются в адсорбции сильного основания (аммиака, пиридина) при 150— 500 С, десорбции с последующим определением количества хемосор-бированного основания и исследованием процесса десорбции и определении теплот адсорбции слабого основания (бензола) [37—42]. Имеются спектральные методы, осуществляемые с помощью адсорбции пиридина и аммиака (в качестве спектрального зонда) для дифференцирования кислотных центров на протонные и апротонные [9, 43]. Однако все указанные методы весьма сложны и применимы больше для исследовательских работ, чем для производственного контроля качества катализаторов. О кислотности твердых тел, включая цеолиты, наиболее полно освещается в обзоре [44[. Панчен-ков с соавторами [32, 33] считают, что нет достаточных доказательств для принятия протонной кислотной гипотезы, а следовательно, карбоний-ионного механизма превращений углеводородов. Они предполагают, что в реакциях углеводородов основную роль играет координационное число иона алюминия. Эти авторы установили связь между понижением координационного числа (К- Ч.) иона алюминия в кристаллических природных алюмосиликатах и повышением их каталитической активности. На примере реакции алкилирования бензола пропиленом высокую активность цеолитов НХ и СаХ авторы объясняют пониженным К. Ч. иона алюминия, равным 4, по сравнению с повышенным К. Ч. (5 и 6) у алюмосиликатов. Проявление активности они обусловливают наличием в ионе алюминия пяти свободных 3 /-орбиталей [32]. [c.154]

    Ниже приводятся данные, полученные при изучении кислотных свойств цеолитсодержащих катализаторов методом высоко-телшературной адсорбции аммиака [9, 12]. Из рис. 8 следует, что цеолитсодержащие катализаторы обладают большей кислотностью по сравнению с аморфным алюмосиликатом. Важно подчеркнуть, что кислотность цеолитсодержащих катализаторов в основном характеризуется сильными центрами в области слабых центров цеолитсодержащие катализаторы даже несколько уступают аморфному алюмосиликату. [c.28]

    Для определения кислотности в водных растворах были применены самые различные методы вплоть до адсорбции из газовой фазы. Колориметрический метод был применен [126] для определения кислотности в виде функции Н . В гомогенных системах определение кислотности для протонных кислот в каком-либо данном растворителе является более простым, чем для льюисовских кислот. Уоллинг [126 понимает кислотность поверхности как ее способность превращать адсообированное нейтральное основание в соответствующую кислоту. Силу кислоты можно определить по изменению цвета, если незаряженный индикатор адсорбируется на поверхности. Применяя ряд индикаторов, основность которых по отношению к воде известна, Уоллинг классифицировал поверхности по их кислотной силе. Следует отметить, что результаты зависят отчасти от среды, из которой адсорбировался индикатор, т. е. окраска получается различной, если, например, к растворителю — изооктану — добавить ацетон или воду. Полагают, что все изменения цвета являются результатом перехода одного протона, однако в недавно появившейся работе [127] показано, что индикатор я-диметиламиноазобензол имеет вторую область изменения цвета, вызванную присоединением другого протона. В случае окислов кислотность зависит от количества адсорбированной воды, и это понятно, так как вода может образовывать иоликислоты. Указанные результаты полуколичественные нужно учи тывать, что измерения кислотности проводят при комнатной температуре и они зависят от растворителя, а каталитические процессы часто осуществляются при высоких температурах поэтому нельзя ожидать точного соответствия между кислотностью и каталитической активностью. На основании измерений, проведенных при помощи индикаторного метода МзОд—ЗЮа, MgO—5102 и обработанные кислотами глины относят к сильным поверхностным кислотам, а А12О3 и ЗЮа считают менее кислыми. Это согласуется с предположением, что катализаторы крекинга должны быть кислыми. Следует отметить, что сила кислот относительна если углеводороды можно рассматривать как основания в растворах кислот фтористоводородной или 1000/о-ной серной, это не означает, что они будут основаниями в отношении поверхности алюмосиликата, которая обладает кислыми свойствами по отношению к п-диметиламиноазобензолу и другим индикаторам. [c.89]

    Сначала при изучении адсорбционных и каталитических свойств цеолитов основное внимание обращалось на геометрическую сторону. В частности, довольно подробно исследовалось значение соотношения диаметра пор к размерам и форме молекул. Эти соотношения имеют большое значение для адсорбции и могут играть определенную роль и в катализе. Однако каталитические особенности цеолитов, в первую очередь, определяются не этим, а особенностями их химического и электронного строения. Именно это, а не микропористость, как таковая, делает цеолиты отличными катализаторами для реакций кислотно-основного типа. Катализ вызывается кислотными центрами поверхности цеолитов, среди которых имеются как протонные бренсте-довские, так и апротонные — льюисовские структуры. Хемосорбируясь на этих центрах, органические молекулы образуют различные органические ионы и радикалы. Их образование на окиси алюминия и алюмосиликатах для молекул, окрашенных в видимой и в близкой ультрафиолетовой части спектра, наблюдал Теренин [81. Такие спектры дают некоторое представление о типе активных промежуточных форм, образующихся при катализе, особенно если параллельно с оптическими спектрами исследуются спектры ЭПР и изотопный обмен. Аналогичные исследования хемосорбции и катализа на цеолитах применительно к различным соединениям алифатического ряда и к предельным и непредельным цикланам получили широкое развитие в работах ученых различных стран [9, 10]. Эти работы привели к установлению нескольких общих закономерностей, из которых отметим следующие. [c.15]

    Процесс гидрокрекинга отличается высокой гибкостью как в отношении используемого сырья — от легких бензиновых фракций до тяжелых нефтяных остатков, так и по характеру получаемых продуктов — от сжиженных газов до гидроочищенного котельного топлива и высокосортных масел. В зависимости от свойств сырья и характера получаемых продуктов процесс проводят в интервалах температур 350—450 °С и давлений 7—20 МПа. Процесс может быть реализован в одну или две стадии. В двухступенчатом процессе первая стадия является, по существу, процессом гидроочистки. Ее основное назначение — удаление соединений серы и азота, отравляющих, соответственно, гидрирующий и крекирующий компоненты катализатора (условия и катализаторы такие же, как прн гидроочистке). Вторая стадия — гидрокрекинг очищенного и облегченного сырья на катализаторах, обладающих крекирующей и гидрирующей функциями. Основные гидрирующие компоненты катализатора Р(), N 5 или N — № 8у. Основные крекирующие компоненты кислотная форма цеолитов типа У, аморфные алюмосиликаты или магнийсиликаты [46]. [c.406]

    В современных процессах гидрокрекинга наиболее распространены бифункциональные гидрокрекирующие катализаторы — активные металлы на кислотном носителе. В качестве металлов в основном используется платина, реже — никель, палладий, молибден и др. Носителем являются различного типа алюмосиликаты. Активный металл обладает гидрирующими свойствами, а кислотный носитель — расщепляющими и изомеризирующими. По данным некоторых исследователей , гидрокрекирующая активность носителя не зависит непосредственно от числа кислотных центров на его поверхности. На сырье в осковком воздействуют кислотные центры, которые находятся вблизи кристаллитов металла и в процессе гидрокрекинга не подвергаются закоксовыванию. Это подтверждается данными [c.269]

    Реакция димеризации пропилена изучалась [611] на катализаторах, основной частью которых служат алюмосиликаты. Нанесение на них окислов переходных металлов (СГ2О3, egOa, FegOg) существенно повышает их. активность. MgO, обладающая щелочными свойствами, понижает активность. По данным работы [612], при полимеризации пропилена до продуктов с низким молекулярным весом обнаружена линейная связь между каталитической активностью и протонной кислотностью изученных силикатных систем. [c.188]

    Для процесса гидрокрекиага в качестве катализатора может быть использован бифункциональный катализатор, применяемый для гидроочистки нефтяных фракций. Основными гидрирующими компонентами катализатора являются сульфиды никеля, кобальта, вольфрама и другие, а также благородные металлы (палладий, платина и др.). Основными крекирующими компонентами являются кислотная форма цеолитов типа У, синтетические аморфные алюмосиликаты или синтетические магнийсили-катные катализаторы [4]. Цеолитные катализаторы отличаются очень высокой крекирующей активностью за счет высокой кислотности и внутренней поверхности носителя катализатора. Это свойство обеспечивает не только высокую удельную производительность по сырью (реакторы меньшего объема), но и работу катализатора при наличии некоторых соединений азота в сырье. [c.12]

    На рис. 3 приведена зависимость Д1 н+ и АГо в логарифмических координатах от значений pH для выбранных образцов катализаторов. Алюмосиликатный катализатор АС-38 обладает поверхностным избыточным положительным зарядом при pH больше 3 и меньше 4 (основные центры, которые реагируют при данных значениях pH). Точка пулевого заряда наблюдается при pH = 4. При рН> >4 общий поверхностный заряд при рн 9,75 (кислотные центры, которые реагируют при 9,75) достигает 2,5 моль-г . Таким образом, иа поверхности алюмосиликата присутствуют как кислотные, так и основные центры, причем концентрация более слабых кислотных центров возрастает с увеличением константы диссоциации кислотного центра рКь основных — с уменьшением константы ассоциации основного центра рКг- Фосфат бора не обнаружил избыточного поверхностного положительного заряда, а только отрицательный при рН>3,2, что указывает на его кислотные свойства. Количество сильных кислотных центров с 3<рК1<5 на алюмосилнкатном и борофосфатном катализаторах невелико не превышает 0,2 ммоль-г , тогда как количество средних и слабых ио силе кислотных центров гораздо выше иа алюмо-селикате, что говорит о его большей кислотности по сравнению с фосфатом бора. [c.48]

    Природные глины (табл. 1) состоят в основном из окислов кремния и алюминия. Сила кислотных центров для некоторых из них приведена в табл. 4. На рис. 38 дана сила и концентрация кислотных центров каолинита, аттапульгита и монтмориллонита, определенные методом к-бутиламинного титрования по Бенези [88]. Обе величины для природных глин меньше, чем для синтетического 5Ю2 А12О3 (рис. 12). Несмотря на то что эти гЛины уже давно используются в качестве катализаторов, исследованию их кислотных свойств и природы кислотных центров посвящено сравнительно мало работ. В настоящее время возрастающее внимание обращается на цеолиты, особенно на синтетические. Цеолиты относятся к классу гидратированных алюмосиликатов, являющихся солью металла и гидратированной алюмокремниевой кислоты, трехмерная кристаллическая решетка которых состоит из группировок атомов А1-О-81 в форме тетраэдров. Цеолиты отличаются от чистого алюмосиликата по кристаллической структуре, кислотности и каталитической активности. Наиболее распространенными катализаторами являются цеолиты X с более низким и цеолиты е более высоким содержанием окиси кремния. Рабо и др. [89] предложили для кальциевой соли цеолитов Хи У следующее строение  [c.89]


Смотреть страницы где упоминается термин Алюмосиликаты как катализаторы кислотно-основные свойства: [c.50]    [c.99]    [c.100]    [c.173]    [c.242]    [c.242]    [c.381]    [c.587]    [c.488]    [c.184]    [c.150]    [c.787]   
Гетерогенный катализ (1969) -- [ c.366 , c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Алюмосиликаты

Катализатор кислотно-основный

Катализаторы кислотно-основные

Кислотно-основное

Кислотно-основные свойства

Кислотные катализаторы

Кислотные свойства

ЛИЗ кислотно основной

Основные катализаторы



© 2025 chem21.info Реклама на сайте