Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испытания разрывные машины

    Определение прочностных свойств резин при растяжении относится к числу наиболее широко распространенных и трудоемких методов испытания. Разрывные машины - основной тип оборудования для испьгганий. К числу основных тенденций при разработке машин относятся [16] оснащение микропроцессорной техникой, обеспечивающей автоматическое проведение испытаний расширение числа диапазонов измерения нагрузки в рамках одного датчика нагрузки и уменьшение размеров датчиков расширение диапазона скоростей перемещения зажимов оснащение цифровым электронным толщиномером с передачей информации на микроЭВМ самой машины оснащение экстензометрами для измерения деформации применение небольших по размерам высокомоментных электродвигателей или миниатюрных систем управления, что существенно меняет дизайн машины установка датчика нагрузки на подвижном зажиме и перенесение благодаря этому зоны обслуживания в нижнюю часть машины, что позволяет оператору работать сидя разработка универсальных машин, обеспечивающих расширение числа методов испытаний на одной машине и позволяющих испытывать различные материалы, например резину, пластмассы, текстиль, бумагу и др. [c.534]


    Машина для испытаний. Разрывная машина должна обеспечить закрепление образца в зажимах по меткам а и 01 при равномерном давлении по всей его ширине. [c.155]

    Проведение испытания. Разрывную машину подготавливают к проведению испытания так, как это описано в работе № 15. [c.88]

    Машина для испытания. Разрывная машина должна обеспечить закрепление образца в зажимах по меткам а и 01 при равномерном давлении по всей его ширине. Скорость движения подвижного зажима (без нагрузки) должна быть 500 25 мм/мин. В процессе испытания машина должна обеспечивать измерение усилий при заданных удлинениях образцов и в момент разрыва с точ- [c.450]

    Основными критериями оценки сварного соединения шипа с трубой являются механическая прочность и внешний вид. Испытания шипов на механическую прочность производятся на разрывной машине. Статическая разрушающая нагрузка прилагается перпендикулярно оси шипа на расстоянии 20 мм от стенки трубы. Шипы, приваренные к трубам по вышеприведенной технологии, при испытании на механическую прочность выдерживают нагрузку от 600 до 1000 кгс. [c.163]

    По окончании испытания для каждой из лопаток на разрывной машине по ГОСТ 9.024-74 определяют предел прочности ст и относительное удлинение . На основании полученных данных вычисляют коэффициенты старения резины Ка и Ке ПО следующим формулам  [c.147]

    При отсутствии сертификата канат подвергают испытанию в соответствии с ГОСТ 3241—80, при котором на разрывной машине доводят до разрушения определенное число проволок. По результатам испытания составляют свидетельство, которое и является основным документом, характеризующим канат. [c.20]

    Характеристики прочности и пластичности исследуемых материалов определялись в ходе испытаний на растяжение (ГОСТ 1497-84) стандартных плоских образцов на разрывной машине УММ-50 [c.38]

    Обычным методом определения вулканизуемости является изготовление нескольких образцов из одной резиновой смеси, различающихся продолжительностью термообработки, и испытание их, например иа разрывной машине. По окончании испытания строят кривую кинетики вулканизации. Этот метод весьма трудоемок и требует значительной затраты времени. [c.39]

    Стержни 1 и 2 подгоняют по скользящей посадке по втулке 8. Это обеспечивает получение равномерной толщины слоя адгезива 5 при формировании, исключает перекос стержней и неравномерность нагружения адгезива при растяжении. К стержням / и 2 на резьбе присоединяют муфточки 6, с помощью которых образец закрепляют в разрывную машину. Испытания проводили на разрывной машине МР-05. [c.140]


    При испытании на разрывной машине задается постоянная, но разная скорость деформации, а измеряется разрывное напряжение. Данные, полученные при различных скоростях и температурах для двух эластомеров, приведены на рис. 12.15. И здесь наблюдается температурная зависимость состоящая из двух линейных участков, разделенных температурой Гл (на графике ей соответствует точка перелома). Для определения энергии активации из наклона линейных участков (рис. 12.15) в соответствии с уравнением (12.10) необходимо знать показатель т, который можно найти двумя мето- [c.349]

    Испытания на разрыв в заводских лабораториях производятся на разрывных машинах (динамометрах) по ГОСТ 270—64. [c.92]

    Предел прочности при растяжении и относительное удлинение при разрыве определяют по ГОСТ 270-75 на образцах в форме двухсторонней лопаточки типа 1, вырезанных в продольном и поперечном направлениях. Испытания проводят на разрывной машине при скорости передвижения подвижного захвата машины 500 50 мм/мин. [c.30]

    Метод отслаивания. В испытании на отслаивание тоже используется стягивающее усилие, перпендикулярное к поверхности покрытия. Этим методом производят контроль металлических покрытий на пластмассах. Испытания проводят на специально подготовленных образцах с ровной плоской поверхностью. На поверхность наносят толстослойное эластичное медное покрытие после осаждения металла химическим методом на пластмассу. Целью испытания является измерение связи между осадком металла, полученным химическим путем, и основным материалом — пластмассой, так как эта связь зависит от процессов предварительной обработки пластмассы, а также от ее физического состояния. На расстоянии 25 мм друг от друга (или некотором другом) наносят две параллельные линии. Они должны проходить сквозь электроосаждаемый слой меди (толщиной 15 мкм) и слой металла, полученный в результате химического осаждения, достигая пластмассы. Кусок полоски металла между линиями, отслоенный с помощью лезвия, вводимого между покрытием и основным материалом со стороны кромки образца, захватывается в тисках разрывной машины, а образец жестко закрепляется. Нагрузка, требуемая для отслаивания металла от пластмассы, считается величиной отслаивания . Во время испытания необходимо сохранять направление действия растягивающего усилия под углом 90° к поверхности образца. Это осуществляется с помощью соответствующих тяг в устройстве для испытаний. [c.151]

    Прочность металлического покрытия на разрыв (так же, как и его эластичность) можно определить с помощью обычной разрывной машины. Образец растягивается до тех пор, пока не произойдет разрушения. В качестве образца используют покрытие, отделенное от основного материала, или покрытие, нанесенное на основной материал, имеющий большие прочность и эластичность, чем у металлического покрытия. Свойства отделенных от основного материала покрытий исследуют по методике испытания механических свойств. При испытании покрытий, нанесенных на более прочный основной материал, необходимо регистрировать значения напряжения, при которых происходит разрушение покрытия, в то время как основной материал образца остается неповрежденным. [c.154]

    Испытания образцов проводились на разрывной машине типа РМ-250 (машина позволяет производить измерения величины нагрузки на образец с погрешностью, не превышающей 1% от величины измеряемой нагрузки, при скорости движения подвижной головки в соответствии с ГОСТом 4648—63). Метод основан на определении величины разрушающей силы при изгибе стандартного образца, свободно лежащего на двух опорах, с даль- [c.44]

    Испытание на растяжение образца из сварного стыка может быть заменено испытанием на растяжение самого стыка. Для этого концы стыка сплющивают, снимают усиление сварного шва и испытывают такой трубчатый образец на разрывной машине. [c.142]

    Важным показателем, характеризующим механические свойства полипропилена, является зависимость удлинения от напряжения, которую определяют, подвергая испытуемый образец растяжению на разрывной машине. При этом испытании под напряжением понимают усилие, действующее на единицу площади первоначального сечения образца [c.99]

    Испытания проводят на разрывных машинах, позволяющих измерять величину нагрузки с точностью до 1 /о от величины измеряемой силы со скоростью растяжения в пределах 10—20 мм/мин. [c.242]

    Испытания на растяжение проводят на разрывной машине. При плавном увеличении нагрузки происходит деформация образца вплоть до разрыва. На диаграммной ленте автоматически вычерчивается кривая, отражающая зависимость между нагрузкой и вызываемой ею деформацией. По полученной кривой определяют предел прочности, предел текучести, относительное удлинение, поперечное сужение. [c.250]

    Продолжительность вулканизации при заданной температуре процесса должна соответствовать оптимуму, который определяют на серии образцов, вырубленных из пластин резиновой смеси, вулканизованной в разных режимах времени (например, 10, 20, 30, 40, 50 мин и т. д.) при одной заданной температуре, после испытания их на разрывной машине. Кинетика вулканизации определяется также на вулкаметрах и реометрах, ротационных и вибровискозиметрах (см. раздел 7.3). [c.47]


    Пределы измерения некоторых марок разрывных машин для испытания резин  [c.117]

    Испытания на разрывных машинах [c.120]

    Разрывные машины широко используются в лабораториях институтов и промышленных предприятий благодаря сравнительной простоте конструкции и возможности их использования для проведения ряда испытаний, различающихся видом деформации (растяжение, сжатие, изгиб), температурными режимами, материалами (резины, технические ткани, многослойные резинотканевые изделия), формой и размерами испытуемых образцов. [c.120]

    Тип разрывной машины Вид испытания. . . . Среда. ....... [c.125]

    Поэтому нельзя оценивать эластичность полимерных деталей, работающих при различных динамических режимах, по их эластическим свойствам, определенным в статических, или почти статических, испытаниях (разрывные машины, эла-стометр Шора и т. п.). Совершенно очевидно, например, что оценку механических свойств резины, предназначенной для работы в шлангах, лентах транспортеров, ремнях, автошинах и, наконец, в авиашинах, нельзя производить одним и тем же методом, а необходимо для каждого из этих изделий про- [c.65]

    Важнейшим физйконмеханическим свойством фильтрующего материала является его п р о ч н о с т ь, характеризуемая разрушающей нагрузкой при растяжении (для гибких материалов) или при сжатии (для негибких материалов). Прочность гибких материалов определяют обыч,но на вертикальной разрывной машине с динамометром. Для этих материалов одновременно определяют и относительное удлинение при разрыве. Испытания негибких материалов проводят, разрушая образец опециальным пуансоном на гидравлическом или механическом прессе. [c.204]

    При постановке экспериментов на обычных разрывных машинах образцы подвергаются растяжению с некоторой скоростью. Переменными являются три параметра деформация, время и напряжение (Т= onst), а результаты испытания фиксируются в виде кривой СГ =/(е). Временной параметр при этом учитывается. Так поступают при испытаниях металлов и часто, к сожалению, полимеров. Чтобы не исключать временной фактор, статические испытания нужно проводить с различными скоростями деформирования в предельно широком диапазоне. Тогда фактор времени косвенно войдет в характеристику материала и кривые будут разными при различных скоростях деформирования. Для статических испытаний нужны машины с плавным изменением в широком диапазоне скоростей деформирования, с жесткими силоизмерителями, обладающими высокой собственной частотой колебаний. Последнее позволяет реализовать все скорости деформирования без ухудшения точности измерения. Кроме этого, машины должны во время испытаний поддерживать постоянными температуру и скорости деформирования. Требования к машинам для динамических и ударных испытаний резин, приборам твердости качественно отличны от требований к аналогичным машинам для металлов [c.43]

    Метод Олларда заключается в осаждении металла на торцевую часть цилиндрического образца и последующем отделении покрытия на разрывной машине. Путем деления силы, необходимой для отрыва, на площадь можно определить силу сцепления покрытия с основным металлом. Недостатки такого способа заключаются в необходимости осаждения толстых покрытий, пригодных для испытания, и сложности подготовки катода после электролиза к испытанию, так как катод обрабатывается на станке для получения выступающих краев покрытия, за которые он удерживается при испытании на разрыв. [c.277]

    Клеящую способность определяют путем испытания на расслаивание на разрывной машине двух склеенных полосок ткани. По одной из методик (ГОСТ 2199—43) берут две полоски сурового мытого миткаля размером 240x50 мм каждая, на которые наносят равномерным слоем 19—20 г клея так, чтобы концы полосок длиной в 20 мм оставались свободными от клея они необходимы для закрепления в зажимах разрывной машины при испытании. После просушивания полосок до исчезновения запаха бензина полоски накладывают друг на друга и сильно прикатывают роликом. Испытание склеенных полосок на расслаивание производят через 10 мая после склеивания. В процессе испытания определяется средняя, вызывающая расслаивание нагрузка, приходящаяся на 50 мм ширины образца. Существуют и другие методы определения клеящей способности каждая методика предусматривает размеры образцов, количество наносимого клея на ткань, условия сушки. [c.328]

    Толщину образца измеряют с точностью до 0,01 мм в трех точках рабочей части. При этом в расчет принимают наименьшее значение. Испытание проводят на разрывной машине РМИ-60. Скорость раздвиже-ния захватов испытательной машины должна быть равна 500 50 мм/мин. За результаты прочности при растяжении и относительного удлинения при разрыве принимают среднее арифметическое из показателей испытаний. [c.24]

    Исследования проводили в условиях постоянной растягивающей нагрузки и при циклическом нагружении образцов. Статические испытания при постоянном напряжении производили на специально сконструированной многопозиционной установке, позволяющей создавать в образцах различные по величине растягивающие напряжения. Испытания на циклическую выносливость проводили в условиях напряжения растяжения переменной величины на разрывной машине ГРМ-1 с гидропульсатором. Условия испытания нагрузка знакопостоянная, асимметричная (коэффициент асимметрии 0,5) при частоте нагружения 200 циклов в минуту на базе испытания ЫО циклов. Одновременно произво-дпли испытания натурных образцов сварных стыковых соединений и основного металла, вырезанных из труб действующего рассолонровода с размерами, аналогичными экспериментальным. [c.236]

    Уступая по некоторым показателям качества пленкам, образованным обычными методами фосфатирования (предварительное удаление продуктов коррозии и обезжиривание, температура раствора около 65 °С и т. д.), пленки, образованные после механохимической обработки, обеспечивали заметное повышение коррозионной стойкости поверхности под слоем противокоррозионного покрытия. Коррозионные испытания образцов, обработанных механическим и механохимическим способом показали, что после 60 сут нахождения их в 3%-ном Na l при температуре около 70 °С на поверхности, обработанной с ХАС, видимых изменений покрытия (ЭП-00-10) не обнаружено. Не изменилось состояние поверхности и под покрытием. В то же время на образцах, обработанных проволочными щетками без ХАС, обнаружены на покрытии пузыри и вздутия диаметром до 6 мм, под которыми появились гидратированные окислы железа. Испытание на сдвиг склеенных образцов на разрывной машине показало повышение прочности сцепления на 20% по сравнению с механической обработкой. [c.258]

    В работе исследовалась также прочность адгезии пульверба-келита (порошок феноло-формальдегидной смолы с отвердителем, применяемый при промышленном изготовлении абразивных шлифовальных кругов на органической связке) к поверхности алмаза, никеля и стали. Исследовались два вида контактов — сталь — пульвербакелит — алмаз и сталь — пульвербакелит — никель. Образцы термообрабатьшали на воздухе при 180° С в течение 20 мин и охлаждали до комнатной температуры вместе с печью. Результаты испытаний образцов на разрыв на разрывной машине МР-005 свидетельствуют об одинаковой адгезии органической связки к поверхности алмаза, стали или никеля. В обоих случаях величина механической прочности на разрыв Ор составила 0,25 0,05 кг1мм . [c.126]

    Испытания при постоянной скорости деформации. В специально сконструирован-иам разрывной машине образец соответствующего типа дефсфмируют с постоянной сксфостью (10" —Ю" м/с) и одновременно подвергают воздействию среды. Растяжение продолжают до разрыва. В про1<ессе испытаний напряжение растяжения измеряют как функция удлинения (рис. 37). Обычно такие испытания продолжают 2 дня. [c.35]

    Испытания под нагрузкой проводились на универсальной разрывной машине фирмы "Лозенгаузен" (с ценой деления 10 кг). Образцы устанавливались на испытательную машину с помощью специальных зажимов и подвергались ступенчато возрастающел у нагружению статическими нагрузками с измерением степени герметичности на каждой ступени нагружения. Динамические нагрузки в пределах ог 0,1 до 0,5 Рр д давались при 2000 циклонов (Рраз разрушающая нагрузка для данного материала). При этом в течение 240 мин снижения давления не наблвдалось. [c.99]

    Механический участок должен иметь оборудование — токарные, фрезерные, строгальные и шлифовальные станки для обработки запасных частей и подготовки контрольных образцов для механических испытаний и металлографических исследований. Служба контроля качества оснащается оборудованием и приборами, например разрывной машиной ГМС-20 для прочностных и пластических испытаний металла маятниковым копром МК-ЗОА для испытаний на ударную вязкость микроскопами МИМ-7 и ММР-2Р для проведения металлографических исследований прибором для определения микротвердости фаз типа ПМТ-3 твердомерами типа ТП и ТК для определения твердости по Виккерсу и Роквеллу рентгеновскими переносными аппаратами типа РУП-120-5-1, РУП-200-4-1, РИНА-1Д, ИРА-2Д, МИРА-2Д, гамма-аппаратом с источником излучения цезий-137, которые позволяют просвечивать металлы и сварные соединения толщиной до 60 мм ультразвуковыми [c.40]

    Во второй главе Исследование металла сварных соединений и основного металла труб длительно эксплуатируемого нефтепровода исследованы изменения механических характеристик металла сварных соединений, выполненных газопрессовой (ГПС) и электродуговой (ЭДС) сваркой, и основного металла нефтепровода после длительного срока эксплуатации (50 лет). Проведены испытания образцов из основного металла, металла швов и зон термического влияния (ЗТВ) сварных соединений, выполненных ЭДС, и металла зоны сварки, включающей зону сплавления и зону влияния, сварных соединений, выполненных ГПС (сталь Ст4сп), на растяжение и ударный изгиб. Испытания на растяжение проводились на универсальной разрывной машине фирмы MST со скоростью деформации, равной 8-10 с при комнатной температуре. Испытания на ударный изгиб проводились на маятниковом копре МК-30 с энергией удара, равной 150 Дж. В результате испытаний определены механические характеристики (предел прочности, предел текучести, относительное равномерное сужение, относительное сужение при разрыве) и значения ударной вязкости для основного металла, металла швов и металла ЗТВ сварных соединений, выполненных ЭДС, и металла зоны сварки стыков, выполненных ГПС (табл. 1). Установлено, что механические характеристики металла зоны сварки стыков, выполненных ГПС, значительно ниже, чем характеристики металла электродуговых швов и основного металла. Значение предела прочности основного металла после 50 лет эксплуатации находится в пределах, указанных в ГОСТ и сертификате на трубы. При испытаниях на ударную вязкость установлено, что в сварных швах и зонах термического влияния значения ударной вязкости более низкие по сравнению с основным металлом, что указывает на высокую вероятность хрупкого разрушения швов. Такие низкие значения могут быть обусловлены влиянием микроструктуры, а также наличием непроваров и пор, обнаруженных в швах. При этом для металла зоны сварки газопрессовых сварных стыков значения ударной вязкости ниже, чем для металла электродуговых швов и основного металла, что, по-видимому, обуслов- [c.9]

    Японская фирма Тоуо Seiky рекламирует автоматическую разрывную машину для определения прочности резин, имеющую максимальную нагрузку 10 Н. В машину устанавливаются до 300 образцов, которые последовательно автоматически испьггьшаются, а результаты испытаний печатаются на ленте. Итальянская фирма Чеаст разработала полностью автоматическую разрывную машину Тензо-вис , оснащенную микропроцессором и роботом-манипулятором. Оператор закладывает в кассету до 100 образцов-лопаток, после чего автоматически проводятся измерения, печатается протокол испытания, в котором приводятся значение прочности каждого образца и его среднее арифметическое значение, удлинение при разрыве каждого образца и его среднее значение, модули при удлинении 100, 200, 300, 400 и 500 %, коэффициенты вариации прочности и удлинения при разрыве. [c.535]

    Испытания резины на отрыв от металла при сдвиге заключаются в параллельном смещении одной металлической пластинки относительно другой, причем между ними находится привулканизован-ный к ним образец резины (рис. 19.1 б). Необходимое для отрыва резины от металла усилие служит характеристикой прочности связи резины с металлом при деформации сдвига. Для определения прочности связи при сдвиге может служить любая разрывная машина, мощность которой не превышает величину абсолютной нагрузки при сдвиге более чем в пять раз при скорости разрыва 50 мм в минуту. [c.541]

    Для определения прочностных свойств материалов применяют разрывные машины, которые являются самым универсальным оборудованием для испытаний на растяжение, сжатие, изгиб, циклические деформации резин, текстиля, резинотканевых материалов, пленок и готовых изделий — ремней, транспортерных лент, резиновой обуви и др. На разрывных машинах определяют прочность связи между материалами в многослойных системах (покрышках, рукавах, конвейерных лентах, резиновой обуви и др.). Испытания при различных температурных режимах ведут на разрывной машине, снабженной термокриокамерой, обеспечивающей температуру испытания в пределах от —80 до Ч-300 С. Это позволяет определять коэффициенты тепло- и морозостойкости. [c.116]


Смотреть страницы где упоминается термин Испытания разрывные машины: [c.534]    [c.227]    [c.251]    [c.534]    [c.536]    [c.542]    [c.125]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.275 ]




ПОИСК





Смотрите так же термины и статьи:

Испытания машин



© 2025 chem21.info Реклама на сайте