Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен на окиси меди

    Если проводить очистку этилена окисью меди при температуре ниже 100 °С (окись меди наносится на пористый носитель ), то при этом происходит образование ацетиленида меди, который разлагается при последующей обработке окиси меди кислородсодержащим газом при повышенной температуре. При подаче этилена со скоростью 25 объемов в час на 1 объем окиси меди содержание ацетилена в этилене снижается с 17 до 2,4 части на 1 млн. [c.225]


    Очищать этилен от кислорода при помощи жидких абсорбентов, по-видимому, нецелесообразно. Более надежна очистка от кислорода при помощи восстановленных металлов. Сюда относятся восстановленная окись меди, марганцевая руда при температуре 300°, восстановленный железный катализатор синтеза аммиака при 250—300.  [c.103]

    В работе применяли технический водород, который подвергали очистке, последовательно пропуская его через нагретую медь, аскарит и перхлорат магния. Таким же образом очищали аргон, применение которого будет описано ниже. Этилен (марки X. ч. ) осушался над перхлоратом магния и для удаления кислорода пропускался через восстановленную окись меди. Далее для удаления любых примесей, могущих служить ядом для данной реакции, этилен с добавкой небольшого количества водорода пропускали над поликристаллическим никелем. [c.40]

    Хлористый винил образуется также из хлористого этила, если смесь паров последнего с кислородом пропускать через окись меди при температуре 300—500° [994]. Реакция, которая на первый взгляд напоминает гидрогенизацию, протекает, очевидно, так, что сначала происходит разложение хлористого этила на этилен и хлористый водород. Атомарный хлор, образуюш,ийся при окислении хлористого водорода, реагирует затем с олефином, в результате чего получается хлористый винил. [c.240]

    Д е г и д р о генизация боковой цепи. Примером этой реакции может служить конверсия этилбензола, получаемого при алкилировании бензола этиленом, до стирола. Реакция протекает в интервале температур от 650 до 700° С или при более низких температурах, а случае применения соответствующих катализаторов. Так, Облад и др. [30] нашли, что в контакте с окисью хрома реакция проходит при 480° С. Во время мировой войны стирол, используемый для получения синтетического каучука, производился главным образом посредством процесса Доу [16] с использованием в качестве катализатора промотиро-ванной карбонатом калия и стабилизированной окисью меди, окиси железа, нанесенной на окись магния. Температура устанавливалась в интервале от 600 до 660° С. Для удаления отложившегося на катализаторе углерода использовался пар в количестве до 2,6 кг на килограмм этилбензола. Реакции дегидрогенизации также способствовало применение бензола в качестве разбавителя или низких давлений. Выходы продукта доходили до 35% за проход, а предельные выходы — порядка 90%. Время действия катализатора — год или больше. [c.107]


    Показано, что разные металлы по-разному действуют на окись этилена. Например, при добавлении металлического калия к окиси этилена сразу происходит бурный взрыв. В присутствии натрия в тех же условиях окись этилена не взрывает даже при нагревании смеси до 95 °С в запаянной трубке. При нагревании окиси этилена с некоторыми металлами (магний, алюминий, цинк, железо, никель, медь, свинец, олово) в запаянной трубке при 95 ""С не наблюдалось бурной реакции. При взаимодействии металлов с окисью этилена выделяется этилен, а поверхность металла покрывается тонкой окисной пленкой. Полимеризация окиси этилена при этом незначительна. [c.84]

    Очень широко, как уже указывалось ранее, используются в данном случае сложные катализаторы, в состав которых входит окись хрома. При этом многочисленными исследованиями, главным образом Баландина с сотрудниками, установлено, что кроме алюмо-хромовых катализаторов высокими дегидрирующими свойствами обладают также медно-хромовые контакты, предварительно восстановленные водородом. Согласно данным рентгеноструктурного анализа, медно-хромовый катализатор обладает кристаллической структурой и линии его рентгеновского спектра принадлежат решеткам металлической меди и окиси хрома при этом грань (111) решетки меди полностью укладывается на слой кислородных атомов окиси хрома [137]. Дегидрирующее влияние медно-хромового катализатора исследовалось в широком ряду алкилбензолов и алкилфенолов. Найдено, что при нормальном давлении и температуре 650° С выход стирола в присутствии медно-хромового контакта доходит до 40% на пропущенный и около 60% на разложенный этилбензол (скорость пропускания этилбензола 450 г на 1 л катализатора в час). В качестве побочных продуктов получалось 7% толуола и 4% бензола имело место также некоторое разложение на газы (метан, этан, этилен) и углеотложение [1381. При снижении парциального давления этилбензола разбавлением углекислым газом (этилбензол С02 =1 2 (мол.)) выход стирола на пропущенный этилбензол и селективность [c.166]

    СиО катализирует глубокое окисление олефинов. Причина неселективного действия окиси меди в настоящее время еще не ясна. Нами было показано [4], что на СиО акролеин и пропио-новый альдегид (и, вероятно, другие альдегиды) окисляются с очень большой скоростью. Возможно, именно этим объясняется низкая селективность СиО. Не исключено, однако, что на окиси меди ненасыщенные карбонильные соединения вообще не образуются, поскольку окисление по группе СНз не происходит, а сразу образуются лабильные промежуточные соединения, которые с большой скоростью окисляются до СОг. Этот более вероятный случай подобен, например, неселективному окислению пропилена на серебре, которое избирательно окисляет этилен в окись этилена. Отсутствие окиси пропилена в про- [c.79]

    Газометрический метод. Анализируемый газ пропускают через раствор реактива, поглощающего окись углерода, и измеряют уменьшение его объема. Для поглощения СО обычно пользуются растворами солей меди (I). Этилен и ацетилен при этом также поглощаются. [c.1047]

    Для производства полиэтилена среднего давления используют в основном этилен, получаемый из продуктов переработки нефти. Поэтому этилен может содержать примеси ацетилена, окиси и двуокиси углерода, водорода, сернистых соединений, кислорода, метана, влаги. Перечисленные примеси уменьшают скорость процесса полимеризации этилена на окисных катализаторах. Окись и двуокись углерода снижают молекулярный вес получаемого полимера и ухудшают его физико-механические свойства. Поэтому этилен, применяемый для полимеризации, необходимо подвергать специальной очистке. Для удаления ацетилена применяют селективное гидрирование и извлечение с использованием органических соединений. Сернистые соединения и двуокись углерода удаляют щелочной очисткой, а метан, окись углерода, водород— тонкой ректификацией. Кислород удаляют, пропуская этилен через слой горячей металлической меди, а воду — адсорбционными методами. Растворители, применяемые в процессе полимеризации олефинов на окисных катализаторах, также необходимо очищать от вредных примесей. [c.75]

    Серебро Закись меди Молибдат висмута Этилен Пропи- лен Окись этилена Акролеин [c.18]

    Вначале проводили обычное аналитическое определение азота ио Дюма в полумикромасштабе по методу Унтер-цаухера [32] (объем образующегося газа 10—20 мл). Образец сжигали в потоке двуокиси углерода, к которому прибавляли кислород, пропуская весь ноток через промывную склянку, заполненную перекисью водорода с кусочками платины. Навеску вещества (50—100 мг) вносили в трубку для сжигания в платиновой лодочке. Наполнение трубки бы.т1о стандартным медь, окись меди хг серебряная вата. В зависимости от вещества продолжительность сжигания и взвешивания —1,5—3 часа. Продолжительность газохроматографического анализа на двух колонках составляла —20—30 мин. В образующемся газе, наряду с азотом, были найдены следующие продукты кислород, окись углерода, метан, окись азота, этан и этилен. Корректируя окончательные результаты по данным газохроматографического анализа, удалось резко снизить ошибку анализа. [c.151]


    Реактив для определения окиси углерода работает одинаково хо-])ошо прн всех температурах, но при указанной концентрации годится для связывания не больше О см окиси углерода. Соединение окиси углерода с пол тслористой медью очень непрочно при эва-ку1грованип, даже при встряхивании с индифферентными газами, час1ъ СО выделяется обратно. Поэтому удобнее пользоваться двумя пипетками, из которых первая служит для предварительного поглощения. вторая для окончательного. Далее надо заметить, что аммиачный раствор полухлористой меди поглощает ацетиленовые углеводороды и отчасти даже этилен, не говоря уже о кислороде. Поэтому, прежде чем определять окись углерода, необходимо элиминировать из газовой смеси эти компоненты. [c.384]

    Приводились [177, 178] и более низкие величины энергии активации, близкие к 10—12 ккал/моль. Обычно считают, что углекислота, образующаяся одновременно с окисью этилена, частично получается в результате окисления последней, а частично независимым путем из этилена [177]. Это подтверждается при использовании в этилене [179]. Имеется сообщение [180], что углекислота может уменьшать скорость образования окиси этилена, тогда как ацетальдегид или хлорированные этилены [174, 181] увеличивают ее выход. На окисях меди и хрома окись этилена окисляется очень быстро подобные же результаты получены [182] для смеси окись магния — окись хрома. Куммер нашел [183], что на различных гранях монокристаллов серебра реакция протекает с различными начальными скоростями, однако спустя некоторое время эти скорости на различных гранях снова уравниваются, так как наблюдается некоторый процесс спекания (синтеринг). Кроме того, оказывается, что скорость реакции одинакова и на пленках, на поверхности которых первоначально находились различные грани [184]. Твигг [177] исследовал хемосорбцию реагентов на серебре и нашел, что этилен едва ли хемосорбируется, а хемосорбция кислорода — медленная и активированная. Он изучил также скорость реакции между этиленом и хемосорбированным кислородом и показал, что скорость образования окиси этилена пропорциональна доле 0о поверхности, покрытой кислородом, а скорость образования углекислоты пропорциональна 0 он считает, что скорость реакции определяется взаимодействием между хемосорбированным кислородом и молекулой этилена из физически адсорбированного слоя. Как и другие, Твигг полагает, что при нормальном окислении смеси этилена с кислородом скорость реакции лимитируется скоростью хемосорбцин кислорода. Любарский [185] измерил электропроводность пленок серебра на стеклянных нитях и показал, что хемосорбция кислорода вызывает переход электронов от серебра к хемосорбированным частицам, так что электропроводность пленки уменьшается. Однако в условиях реакции, приводящей к образованию окиси этилена, электропроводность близка к наблюдаемой для восстановленной пленки это подтверждает, что хемосорбция кислорода является медленной стадией. Наконец, некоторые изме- [c.334]

    Адсорбцию одного газа можно уменьшить добавлением другого, более сильно адсорбируемого газа. Однако каталитическая активность часто снижается в гораздо большей степени, чем адсорбция. В реакции водорода с этиленом катализируемой тонкодиспергированной медью, следы ртути понижают скорость реакции в 200 раз, тогда как адсорбция этилена снижается при этом на 14%, а адсорбция водорода на 80% [224]. Поэтому предполагают, что имеете два вида адсорбционных участков один, на котором яд (ртуть) адсорбируется с вытеснением водорода, и второй, на котором адсорбируется этилен. Главные центры каталитической реакции при этом занимаются ртутью. Гриффин [114] получил изотермы для адсорбции водорода на тонкодиспергированной меди при 0° в присутствии окиси зтлерода и циана, а также отдельно изотермы для этих газов (фиг. 36). Циан очень сильно адсорбируется и ведет себя как ртуть он уменьшает адсорбцию при всех давлениях. Окись углерода, напротив, вызывает небольшое повышение адсорбции при, низких давлениях. [c.399]

    При низких темп-рах (ок. 0°С) И. образует с солями одновалентной меди (напр., u l) комплексные соединения, разлагающиеся при повышенных темп-рах. При 400—500°С И. частично полимеризуется с образованием смеси терпеновых соединений, при 600—700°С он разлагается на этилен, пропилен и бутадиен, при 750°С образуются легколетучие компоненты напр.. На, СН4) и продукт, аналогичный каменноугольной смоле, в к-ром обнаружены бензол, толуол, нафталин, антрацен, 1,2-бензфенантрен. [c.406]

    В ряде работ микроанализ газов сводится к измерению их объемов в капиллярных трубках и к последующему поглощению отдельных компонентов газовой смеси различными абсорбентами. На этом принципе в Институте химической физики АН СССР [53] был разработан прибор для микроанализа газов, дающий возможность измерять количества газа порядка 0,5 мл с ошибкой, не превышающей 1 %. Для устранения растворения газов в воде, были применены сухие поглотители, которые в виде крупинок помещали в платиновую петлю, впаянную в стеклянную палочку. В отдельных случаях применяли жидкие поглотители, которыми пропитывали кусочки пористого стекла. Пары воды поглощались фосфорным ангидридом, двуокись углерода — слегка влажным КОН. Этилен поглощался нанесенной специальным методом на кусочки пористого стекла серной кислотой, содержащей 25% ЗОз по окончании поглощения, которое длится 5 мин., в смесь газов вводили кусочек КОН для удаления паров 80з. Поглощение ацетилена производили пастой, приготовленной из однохлористой меди и гидрата окиси калия полное поглощение ацетилена этой пастой происходит в течение 2—3 минут. Кислород определялся желтым фосфором, который плавился в специальной ложечке, погруженной в нагретую до 50° воду после этого в ложечку вводили платиновую петлю. Обливая ложечку холодной водой, получали фосфор в виде застывшего на петле шарика. Окись углерода окислялась, а затем поглощалась активной окисью серебра, осажденной из раствора А КОз крепким раствором КОН. Осадок тщательно промывали и фильтровали. Слегка влажную окись серебра хранили в склянке с притертой пробкой, а перед анализом препарат прессовали и укрепляли на платиновой проволочке с помощью капли концентрированного раствора жидкого стекла. Горючие компоненты газовой смеси сжигали в микронипетке, схематически изображенной на рис. 73. Основная часть микропипетки для сожжения 1 закрыта сверху капиллярным краном 2, а снизу — обыкновенным краном 3, на стеклянную оливку [c.189]

    Такой механизм взаимодействия целлюлозы с комплексньщи соединениями гидроокиси меди подтверждается данными о растворении окиси серебра в куоксене при добавлении к нему поли-оксисоединений, в частности глицерина (окись серебра не растворяется ни в глицерине, ни в куоксене, но растворима в этилен-диамине). [c.144]

    Интересные исследования влияния катализаторов на скорость гипохлорирования провел Фрам [99]. Он пашел, что добавка небольших количеств солей меди, железа, никеля или кобальта может очень ускорить эту реакцию. Соли ртути, свинца, ципка и т. п. не оказывают влияния. Поскольку все металлические соли, которые могут разлагать хлорноватистую кислоту, являются активными для этого процесса, а соли, не разлагающие кислоту, не оказывают никакого действия на скорость реакции, Фрам считает, что хлорноватистая кислота окисляет этилен в окись этилена, которая с соляной кислотой сразу же образует хлоргидрин [c.390]

    Катализатором в реакции И. И. Штеттера являются хлористый алюминий или смеси его с хлоридами ртути, меди, магния, цинка, никеля, железа и др. В присутствии этих катализаторов в реакцию с Si U вступают этилен, пропилен, бутадиен, ацетилен, винилаце-тклен, окись углерода и др. [c.117]

    Экспериментальные данные но избирательности изучаемых катализаторов по этилену и формальдегиду показаны на рис. 3. Как видно из рис. 3, а, с уменьшением подвижности поверхностного кислорода окисла избирательность катализаторов по этилену растет. Помимо этого, значительную избирательность по этилену проявили катализаторы, содержащие окислы никеля, меди и кобальта. Последнее, видимо, свидетельствует о более сложном характере данных катализаторов. Например, окись кобальта в нанесенных катализаторах образует соединения типа Со(А1г04) [11], что, естественно, должно влиять на каталитические свойства. Избирательными по формальдегиду (см. рис. 3, а) являются лишь катализаторы с малоподвижным поверхностным кислородом. [c.83]

    Однако совсем недавно было обнаружено, что иа самом деле застения способны метаболизировать этилен. Среди идентифицированных продуктов превращений этилена можно назвать окись этилена, этиленгликоль (1,2-этандиол) и конъюгат этиленгликоля с глюкозой. Окисление этилена, очевидно, происхо-0 дит иа медьсодержащем рецепторе, поскольку оно ингибирует-/ ся ионами кобальта и серебра, а также агентами, хелатирую-щими Си + (например, ЭДТА). Было высказано предположение, что Со + и Ag + могут замещать медь в рецепторе, иа котором происходит окисление этилена. Участие меди в окислении этилена подтверждается также тем фактом, что в простых вод-шых растворах медь образует комплекс с С2Н4, и в результате выделяется окись этилена. [c.110]


Смотреть страницы где упоминается термин Этилен на окиси меди: [c.225]    [c.917]    [c.180]    [c.25]    [c.231]    [c.885]    [c.551]    [c.532]    [c.409]    [c.222]    [c.21]    [c.398]    [c.175]    [c.231]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.178 , c.471 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен окись



© 2025 chem21.info Реклама на сайте