Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись этилена основность

    В сыром с в е т и л ь н о м газе содержатся водород, метан, азот, окись углерода, двуокись углерода, дициан, синильная кислота, насыщенные углеводороды (преимущественно этан), этилен, ацетилен, бензол, нафталин, сероводород, аммиак и др. В основном светильный газ состоит из водорода и метана. [c.475]

    Современная разработка топливных элементов предусматривает в основном использование газообразных и жидких топлив. Среди газообразных видов топлива наибольшее внимание привлекают водород и окись углерода, а также метан, этан, пропан, бутан, ацетилен и этилен. В качестве жидкого топлива перспективны низшие спирты, формальдегид и некоторые другие органические и неорганические вещества. Наибольшее развитие получили топливные элементы, использующие водород как горючее, а чистый кислород или кислород воздуха — как окислитель. [c.491]


    Окисление этана под высоким давлением уже не ведет к этилену как основному продукту образуются также метанол, формальдегид, этанол, ацетальдегид, окись и двуокись углерода. Изучение окисления смеси 90% этана, 3% кислорода и 7% азота в проточной системе при 50 ат и 371° С показало [131], что 63% прореагировавшего этана превратилось в этанол. [c.203]

    Газ, выходящий из колонны 25, содержит ацетилен, этилен, метан, а также водород и окись углерода. Ацетилен выделяют из него абсорбцией метанолом при —35 °С в колонне 26. Метанольный раствор перетекает в колонну 29, где из пего при давлении 3,93-10 Па (4 кгс/см ) вместе с некоторым количеством ацетилена десорбируются инертные газы. Эти газы с помощью компрессора 9 возвращают в основной газовый поток. Ацетилен, содержащийся в растворе, десорбируют при нагревании раствора через змеевик в колонне 30. [c.475]

    Прн использовании М О значительное количество окиси этилена изомеризовалось в ацетальдегид кроме того, в конденсате было обнаружено до 20% этиленацеталя ацетальдегида. Жидкие продукты состояли в основном из олефинов, а в газообразных были обнаружены окись и двуокись углерода, водород, кислород, ацетальдегид, этилен, пропилен и бутилены. Присутствие пропилена, по мнению авторов , указывает на радикальный механизм распада окиси этилена. [c.64]

    Из солей лучше использовать азотнокислую или сернокислую ртуть. В раствор соли ртути пропускают газообразный этилен со скоростью 4 л/ч. Реакция инициируется добавкой водного раствора роданистого калия. Основные продукты — ацетальдегид и окись этилена, концентрация которой в продуктах реакции достигает 5—6 объемн /0. [c.151]

    Наиболее подробно изучен фотолиз ацетона в парах [90, 91] (см. также стр. 318 в книге [14]). Как указывалось выше, в этом случае образуются этан, окись углерода и диацетил, причем выход диацетила сильно зависит от экспериментальных условий. При температурах выше 100° диацетил не обнаружен. При более высоких температурах уменьшается также выход этана и в этих условиях основным продуктом становится метан. Выходы метана и этана зависят также оглавления и интенсивности излучения. Прочими продуктами являются метилэтилкетон, а при температурах выше примерно 200°—кетен и этилен. Фотолиз ацетона широко используется в качестве источника свободных радикалов как для кинетических исследований, так и для инициирования свободнорадикальных реакций в других системах. Результаты многочисленных исследований, посвященных фотолизу ацетона, подробно изложены в работах [90, 91] (см. также стр. 318 в книге [14]), в связи с чем здесь кратко рассматриваются лишь основные выводы. [c.253]


    Циклические кетоны. При облучении циклических кетонов ультрафиолетовым излучением образуются окись углерода и некоторые углеводороды [ИЗ—115]. Так, циклогексанон дает окись углерода и пентаметиленовый бирадикал, который в основном хотя и изомеризуется до циклопентана и пентена-1, однако распадается также с образованием небольших количеств этилена и пропилена 115]. Циклопентанон дает окись углерода, этилен и циклобутан. Выход циклобутана составляет 38%. При учете трудностей, возникающих при получении циклобутана другими методами, эта реакция может найти применение как метод синтеза циклобутана [116]. [c.256]

    Таким образом, наряду с основным продуктом реакции — этиленом образуются побочные продукты диэтиловый эфир, сернистый газ, углекислый газ, окись углерода, углерод. Углерод вызывает почернение массы в колбе. [c.87]

    Образование электронновозбужденных продуктов из исходных веществ в основных состояниях. При взаимодействии атомов О, находящихся в нормальных состояниях, с этиленом (или вообще олефинами) в качестве основных первичных продуктов [57, а] образуются ацетальдегид и окись этилена  [c.74]

    Выходящие из сепаратора пары и газы поступают в колонну, в верху которой поддерживают температуру около ЮО С. В этой колонне разделяются жидкие продукты, конденсирующиеся в пределах 300—100°С высококипящие фракции, отбираемые с низа колонны, смешиваются с циркулирующим закалочным маслом. Тепло газа используется в котле-утилизаторе. Фракция с высоким содержанием нафталина выводится с тарелки посредине высоты колонны. Низкокипящие фракции отбирают с верха колонны вместе с газом и конденсируют в конденсаторе вместе с псевдоожи-жающим водяным паром. Легкая фракция, состоящая главным образом из легких ароматических углеводородов, отделяется от воды в сепараторе и возвращается в верх ректификационной колонны избыток ее отбирается в виде побочного продукта процесса. Ие-сконденсировавшийся газ направляется на газоразделительную установку, где при низкой температуре выделяются основные продукты пиролиза этилен, пропилен и фракция С4 с высоким содержанием бутадиена и побочные продукты водород, окись углерода и метан, идущие на производство синтез-газа. [c.223]

    Этилен. В нефтехимических синтезах в наибольших количествах используется этилен. Из него получают этиловый спирт, окись этилена, полиэтилен, стирол, ди.хлорэтан и другие продукты. Основная масса этилена в ближайшие годы будет перерабатываться в полиэтилен (рис. I. 4). [c.25]

    Изотопно-кинетический метод применялся при исследовании каталитических реакций. Промышленное значение имеет процесс каталитического окисления этилена на серебре. Продуктами реакции являются технически важная окись этилена и углекислый газ. Предстояло выяснить, происходит ли образование СОа в результате доокисления окиси этилена или независимым путем, в качестве побочного направления процесса окисления этилена. В реакционную смесь вводили меченый этилен и немеченую окись этилена. Удельная активность образующегося СОг оказалась во много раз выше активности окиси этилена. Следовательно, основная масса [c.235]

    Эту реакцию проводят при температуре около 360°С в присутствии хлористого водорода в стационарном слое палладий-це-зий-ванадиевого катализатора при низкой степени конверсии этилена за один проход и 100%-ной степени конверсии синильной кислоты. Выход акрилонитрила составляет 74% по этилену и 88% по синильной кислоте. Основными побочными продуктами являются ацетонитрил, окись углерода, двуокись углерода, хлорпропионитрил, дихлорэтан и хлористый винил. [c.208]

    В настоящее время попытки использования твердого топлива в топливных элементах оставлены, и основное внимание уделяется использованию газообразных и жидких топлив, обладающих большей химической активностью и более удобных в технологическом отношении. Среди жидких топлив наиболее перспективными являются метиловый и этиловый спирты, формальдегид, гидразин среди газообразных —этилен, бутан, пропан и другие углеводородные газы, бензин в парообразном состоянии, окись углерода, водород. Окислителем в большинстве случаев служит кислород (свободный или входящий в состав воздуха), но для некоторых специальных [c.491]

    Этилен используется для получения очень большого количества органических хи.мических продуктов, имеющих чрезвычайно важное народнохозяйственное значение. Основные из них дихлорэтан, этиловый спирт, окись этилена, этиленхлоргидрин, ацетальдегид и ряд других продуктов. [c.303]

    Основными вредными веществами при производстве полиэтилена и его переработке являются этилен, пары метилового спирта и бензина, триэтилалюминий, четыреххлористый титан и продукты разложения катализатора — окись алюминия, гидроокись титана, хлористый водород [82, 83, 84]. [c.179]


    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    Третья ветк а—производство на базе олефиновых углеводородов. Важнейшими полупродуктами в промышленности нефтехимического синтеза являются низкомолекулярные олефиновые углеводороды—этилен, пропилен и бутилены. На базе переработки этих продуктов основаны современные производства высококачественных пластических масс, синтетических волокон, синтетического каучука, моющих веществ и целого ряда других химических продуктов, таких, как синтетические спирты, альдегиды, кетоны, гликоли, фенол, окись этилена, нитрил акряловой кислоты и др., являющиеся, в свою очередь, ценными промежуточными продуктами в производствах органического синтеза. Основным источником получения олефиновых углеводородов является процесс пиролиза нефтепродуктов. [c.314]

    Технологическая схема процесса получения окиси этилена, разработанного фирмой S ientifi Design, изображена на рис. 6.24. Воздух, подаваемый компрессором У, смешивается с этиленом и циркулирующим реакционным газом и вводится в низ контактного аппарата 2, в трубки которого загружен катализатор. Температура окисления регулируется скоростью циркуляции теплоносителя. Реакционные газы охлаждаются в теплообменнике, нагревая циркулирующий газ, и в холодильнике, а затем компримируются дожимающим компрессором 3. Далее газ поступает в основной скруббер 4, где окись этилена улавливается водой. Большая часть выходящего газа направляется на смешение с исходной эти-лено-воздушной смесью, меньшая — в дополнительный контактный аппарат 5 для окисления непрореагировавшего этилена, а затем на промывку водой в дополнительный скруббер 6. Отходящий из скруббера газ выбрасывается в атмосферу. Водные растворы из скрубберов 4 и 6 смешиваются и поступают в десорбер 7. Из верхней части десорбера отводят окись этилена, пары воды и Oj. Они компримируются и направляются на двухступенчатую ректификацию. В колонне 9 выделяется этилен, Oj и другие легкокипящие компоненты. С верха колонны 10 отбирают окись этилена. В кубе этой колонны остаются высококипящие примеси (вода, ацетальдегид, этиленгликоль). [c.206]

    Газ, выходящий из абсорбера под давлением 18 ат, состоит из водорода, (основная масса), метана, этилена и других газов, таких, как азот и (в небольшом количество) окись углерода. Пз этой смеси иа двух установках Лииде отделяют чистые водород и этилен. Иа первой установке отбирают этан-этиленовую фракцию, па 1 торой отделяют эта]1 от этилена. Этап (соответственно метан) возвращают на установку электрокрекипга. [c.127]

    Под действием ультрафиолетовых лучей окись этилена разла-гается . Продуктами фотосенсибилизированного распада окиси этилена в присутствии ртути при комнатной температуре являются окись углерода, водород, альдегиды (в основном уксусный и высшие), метан, этан, пропан и небольшое количество радикалов СН. —СО. Добавки этилена и бутилена-1 сильно ингибируют выход альдегидов. Этилен увеличивает выход пропана и радикала СНл—СО. Бутилен-1, напротив, почти полностью ингибирует образование пропана, но индуцирует образование этилена и высших парафинов (до октана). При разложении сдмесей дейтерирс-ванной и недейтерированной окиси этилена наряду с Из и Оз образуется НО. В продуктах ингибированного этиленом распада такой смеси НО практически отсутствует, а количество Ог и Н-2 уменьшается до некоторого предела. Основным первичным актом, по-видимому, является распад возбужденной молекулы окиси этилена на -СНз и -СНО, причем далее из -СНОобразуются Н- и СО. Добавки олефинов связывают атомы Н, а алкильные радикалы частично связывают радикалы -СНО, образуя высшие альдегиды и парафины. Кроме того, возможен менее значительный распад окиси этилена на молекулу водорода и кетен, а также на циклический бирадикал и атомарный водород. [c.61]

    На рис. 43 показана одна из схем производства окиси этилена каталитическим окислением этилена. Очищенные от примесей воздух и этилен смешиваются с рециркулирующим газом и поступают в основной реактор 1 (реактор первой ступени). Выходящие горячие газы, пройдя теплообменник 5,нагревают рециркулирующие газы, сжимаются компрессором 8 и поступают в основной абсорбер 2 (абсорбер первой ступени), в котором окись этилена и образующиеся в качестве побочных продуктов незначительные количества ацетальдегида и часть двуокиси углерода поглощаются водой. После абсорбера 2 большая часть газов возвращается в цикл на смешение со свежим этиленом и воздухом, а остальные газы после нагревания в теплообменнике смешиваются с добавочным количеством воздуха и поступают в дополнительный реактор 3 (реактор второй ступени). Добавочное количество воздуха вводится для более полного окисления этилена в реакторе 3. Отвод образующегося тепла из обоих реактаров Производится циркулирующим теплоносителем, который, в свою очередь, отдает тепло кипящей воде. Таким образом, теплота реакции используется для получения водяного пара. [c.227]

    Кинетическое исследование, отражая механизм каталитического процесса окисления этилена в целом, позволяет сопоставипт скорости отдельных стадий и определить основные и второстепенные реакции. С помощью кинетического метода, например, установлено, что этилен на серебряном катализаторе превращается в окись этилена и параллельно — в двуокись углерода и воду. Однако кинетический метод не всегда дает возможность судить о характере промежуточных продуктов, о тех элементарных химических актах, которые протекают слишком быстро, существенно не отражаясь на общей скорости процесса. [c.287]

    Термическое разложение диацетилперекиси при 80° С в отсутствие растворителей дает газообразные продукты двуокись углерода (60%), метан (29—34%), этан (3,5—4,5%), этилен (1,1—1,6%), кислород (2%) и окись углерода (1,6—3%)2 . При распаде твердой иерекиси под действием ультрафиолетового света состав продуктов сушественно не меняется основными продуктами разложения являются двуокись углерода (67—68%) и этан (23,6-25,1%). [c.390]

    Селективность адсорбции, требуемая при определении удельной поверхности металла в многокомпонентных (например, нанесенных) металлических катализаторах, достигается при условии, что газ в основном хемосорбируется на поверхности металла, а адсорбция на поверхности неметаллического компонента относительно мала (в идеальном случае равна нулю). Если катализатор состоит только из металла, вопрос о дифференциации компонентов, естественно, не возникает и удельную поверхность металла, равную общей удельной поверхности образца, можно измерить методом физической адсорбции или хемосорбции. Однако каждому методу присущи свои особенности. Если используется хемосорбция, должен быть хорощо известен химический состав поверхности, с тем чтобы можно было говорить об определенной стехиометрии адсорбции. В то же время, если удельная поверхность невелика, неточность из-за поправки на мертвый объем при хемосорбцин меньше, так как значительно ниже давление газа. Наиболее широко исследована хемосорбция водорода, окиси углерода и кислорода, иногда применяются и другие вещества, например окись азота, этилен, бензол, сероуглерод, тиофен, тиофенол. [c.300]

    Пик с mie 42 в основном обусловлен углеводородным ионом ж (СзН ) [22], который содержит атомы С-2, С-3 и С-4. Нейтральные частицы, образующиеся при этом распаде,—это окись углерода и этилен. Иными словами, механизм образования фрагмента ж аналогичен механизму образования иона этилена в из циклопентанона XXII. [c.35]

    При выделении ацетилена из более сложных газовых смесей, например из продуктов неполного горения природного газа, хроматографическое разделение может сочетаться с дополнительным абсорбционным извлечением компонентов [И ]. В результате окисления природного газа получается газовая смесь, содержащая в основном водород и азот, а также двуокись углерода, окись углерода, метан, ацетилен, этан и этилен. При гиперсорбционном разделении этой смеси на два компонента с верха колонны выделяется смесь, [c.260]

    В городах Сидрифт, Лонгвью и Одесса (Техас) вырабатывают основные органические химикаты и полимерные материалы. В г. Сид- i рифт находится крупный завод по производству этилена мощностью i 363 тыс. т/год, здесь получают окись этилена, этиловый спирт, полиэтилен, бутадиен. В г. Лонгвью вырабатывают этилен и его производные, 1 полиэтилен, полипропилен, уксусную кислоту, в г. Одесса — органиче- I ские полупродукты, синтетический каучук и серу. [c.524]

    Мощность по производству основных нефтехимических продуктов НХК характеризуется следующими данными (в тыс. т/год) синтетичесвсие каучуки - более 500 мономеры СК - дивинил изопрен - 450 этилен - мопщость ЭП-450-450 этилбензол - 150 стирол - 125 окись этилена с переработкой - 120 окись пропилена 50 система этиленопроводов -800 км. [c.194]

    Получение олефинов и д и о л е ф и-н о в. При нагревании Г. п. г. до 600° и выше содержащиеся в них парафиновые углеводорода. способны к реакциям расщепления с разрывом связей и образованием ненредельных углеводородов и водорода или непредельных и предельных углеводородов с меньшим числом атомов углерода в молекуле. Эти реакции применяются для ироиз-ва этилена, пропилена, бутилена, бутадиена и изопрена, являющихся основным сырьем для получения спиртов, пластмасс и синтетич. каучуков. Расщепление углеводородов в промышленных условиях проводится под воздействием только темп-ры (пиролиз) или темп-ры и катализаторов (см. Гидрогенизация и дегидрогенизация каталитические). В зависимости от способа подвода тенла, необходимого для протекания реакций, пиролиз и дегидрирование проводят в трубчатых печах с внешним обогревом или в печах регенеративного типа. Выход непредельных углеводородов зависит от темп-ры, времени пребывания сырья в реакционном пространстве, давления, отношения С/Н в исходном сырье, конструкции печи и др. факторов. Основным продуктом термич. пиролиза этана является этилен. При переходе от этана к пропану и бутану в продуктах пиролиза наблюдается снижение выхода этилена и увеличение выхода высших олефинов (пропилена и ёутиленов). Суммарный выход непредельных углеводородов при термич. пиролизе составляет (в вес. %) из этана 75—77, из пропана 40—50 и из бутана ок. 50. [c.387]

    Олефины. Низшие олефины (этилен, бутилены) при 400° над алюмоси-ликатным катализатором изменяются сравнительно мало. Но уже при 500° бутилены подвергаются глубоким иревращениям в основном, это — распад, изомеризация, полимеризация и диспропорционирование водорода в результате наблюдается образование изобутилена и до 21 % жидких углеводородов. Аналогичные превращения претерпевают н. пентены и н. октилены, причем в жидком катализате обнаруживается наличие ароматических углеводородов, а в газообразных продуктах крекинга ок-тиленов — пропилен, бутилены, бутан и изобутан. [c.497]

    Один из основных путей химической переработки низших олефинов — получение из них соответствующих спиртов (см. стр. 758). Тах , например, этилен С2Н4 является сырьем для получения этилового спирта, который далее можно переработать на уксусный альдегид и уксусную кислоту, на синтетический каучук, по Лебедеву. Из этилена легко получаются также многочисленные его производные, имеющие большое практическое значение, как-то дихлорэтан, этиленхлоргидрин, окись этилена, этиленгликоль и многие другие. [c.753]

    Как было отмечено выше, изонитрилы также могут выступать в качестве окислительных субстратов нитрогеназы [140—142]. Они восстанавливаются в углеводороды, содержащие атом углерода изонитрильной группы, и первичные амины, образующиеся из фрагмента R—N. Изонитрилы, так же как и азот, присоединяются к атомам переходных металлов концом молекулы. При восстановлении связанного метилизонитрила в качестве основного продукта шестиэлектронной реакции образуется метан, тогда как при восстановлении некоординированной молекулы изонитрила процесс идет в основном до диметиламина — продукта пятиэлектронной реакции. Такое сочетание свойств делает изонитрилы превосходным субстратом при изучении как биологических нитрогеназ, так и модельных систем. При использовании в качестве катализатора комплекса молибден — цистеин состава 1 1 основными продуктами восстановления изонитрила борогидридом натрия являются этилен и этан [137]. Как и в случае ацетиленовых субстратов, экспериментальные данные согласуются с каталитической активностью мономерных молибденовых комплексов. Восстановление слабо ингибируется молекулярным азотом и более эффективно подавляется окисью углерода. Опыты с N2 показали, что азот как ингибитор этой реакции восстанавливается до аммиака и что молекулы N2 и RN связываются одними и теми же центрами, по-видимому, атомами молибдена. Кроме того, азот и окись углерода — конкурентные ингибиторы восстановления изонитрилов нитрогеназой, что убедительно показывает наличие у молибдена свойств, необходимых для связывания и восстановления субстратов. На рис. 49 [c.318]

    Мейсельс и др. [64], Гевантмен и Вильямс [65], для оценки свободных радикалов, образующихся в чистом метане и смесях метана с благородными газами, применили иод в качестве акцептора радикалов (см. табл. 7,1). Согласно их данным, основными радикальными продуктами являются Н-, -СНз, -С2Н5 и -СНг. Наблюдалось увеличение выхода этилена, которое было связано с акцептированием радикалов, реагирующих с этиленом [реакция (7.119)]. Следует отметить, что многочисленные результаты, приведенные в табл. 7.1, могут не вполне точно соответствовать количеству радикальных продуктов, возникающих в облучаемой смеси. Например, атомы водорода очень часто находятся в довольно возбужденном состоянии (горячие атомы) и поэтому преимущественно взаимодействуют с метаном, а не с иодом. Так, Янг и Манно [63] считают, что по сравнению с иодом окись азота гораздо удобнее использовать в качестве акцептора радикалов, поскольку N0 гораздо эффективнее взаимодействует с атомарным водородом, но, несмотря на это, в настоящее время чаще применяется иод. Выходы, приведенные в табл. 7.1 (кроме иодидов), по-видимому, также отвечают и нера- [c.192]

    В автоклав с катализатором подавали олефин, окись углерода и водород. Загрузку олефина контролировали по весу. Выгруженный продукт обычно представлял собой двухслойную жидкость. Оба слоя анализировали на хроматографе ЛХМ-7А с пламенно-ионизационным детектором. Содержание спиртов в нижнем слое [в основном Ре(С0)5] было крайне незначительным. При хроматографировании в качестве неподвимчной фазы применяли полиэтиленгликольадипи-нат (10%) на кирпиче ИНЗ-600 длина колонки составляла 2 м, температура 70° С скорость газа-носителя (аргон) 20 мл мин. Внутренним стандартом в опытах с этиленом служил изобутиловый спирт, а в опытах с пропиленом — изоамиловый спирт. [c.150]

    В ряде работ микроанализ газов сводится к измерению их объемов в капиллярных трубках и к последующему поглощению отдельных компонентов газовой смеси различными абсорбентами. На этом принципе в Институте химической физики АН СССР [53] был разработан прибор для микроанализа газов, дающий возможность измерять количества газа порядка 0,5 мл с ошибкой, не превышающей 1 %. Для устранения растворения газов в воде, были применены сухие поглотители, которые в виде крупинок помещали в платиновую петлю, впаянную в стеклянную палочку. В отдельных случаях применяли жидкие поглотители, которыми пропитывали кусочки пористого стекла. Пары воды поглощались фосфорным ангидридом, двуокись углерода — слегка влажным КОН. Этилен поглощался нанесенной специальным методом на кусочки пористого стекла серной кислотой, содержащей 25% ЗОз по окончании поглощения, которое длится 5 мин., в смесь газов вводили кусочек КОН для удаления паров 80з. Поглощение ацетилена производили пастой, приготовленной из однохлористой меди и гидрата окиси калия полное поглощение ацетилена этой пастой происходит в течение 2—3 минут. Кислород определялся желтым фосфором, который плавился в специальной ложечке, погруженной в нагретую до 50° воду после этого в ложечку вводили платиновую петлю. Обливая ложечку холодной водой, получали фосфор в виде застывшего на петле шарика. Окись углерода окислялась, а затем поглощалась активной окисью серебра, осажденной из раствора А КОз крепким раствором КОН. Осадок тщательно промывали и фильтровали. Слегка влажную окись серебра хранили в склянке с притертой пробкой, а перед анализом препарат прессовали и укрепляли на платиновой проволочке с помощью капли концентрированного раствора жидкого стекла. Горючие компоненты газовой смеси сжигали в микронипетке, схематически изображенной на рис. 73. Основная часть микропипетки для сожжения 1 закрыта сверху капиллярным краном 2, а снизу — обыкновенным краном 3, на стеклянную оливку [c.189]

    Гомогенное алкилирование парафинов при высоких давлениях исследовали Фрей и Хепп [23]. Они алкилировали пропан и изобутан этиленом при 504—510° и 300 атм, получив при этом в качестве основных продуктов в первом случае изопентан и и. пентан, а во втором смесь гексанов, содержащую ок. 80% 2,2-дйметилбутана (неогексана). В опытах указанных авторов не исследовалось влияние давления па скорость алкилирования. Такого рода данные содержатся в более поздней работе [24] по термическому и каталитическому (гомогенному) алкилированию изобутапа этиленом и пропиленом при высоких давлениях. Некоторые результаты этого исследования приведены в табл. 26 и 27. [c.99]


Смотреть страницы где упоминается термин Окись этилена основность: [c.115]    [c.368]    [c.32]    [c.32]    [c.233]    [c.325]    [c.190]    [c.109]    [c.494]    [c.388]    [c.399]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.481 , c.482 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен окись

окиси основность



© 2025 chem21.info Реклама на сайте