Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклический анализ

    Анализ состава смеси углеводородов, образующихся при алкилировании бензола трет-пентиловым спиртом в присутствии 80%-й серной кислоты показал наличие более чем 60 различных компонентов, включая циклические, полиметилбензолы и др. Основными продуктами реакции (с выходом 35 и 38%) были трет-бутилбензол и трег-пентилбензол, соответственно [175]. Естественно, что высокая степень превращения промежуточных соединений (предположительно карбокатионов) затрудняет изучение механизма процесса алкилирования третичными агентами. [c.107]


    Значительное тепловыделение при полимеризации приводит к тому, что в большом температурном интервале ДОм отрицательно, т. е. термодинамические ограничения отсутствуют. Для анализа влияния температуры на термодинамическую вероятность проведения полимеризации сопоставляют знаки величин ДЯм и Д5м. Для большинства полимеризационных процессов ДЯм и Д5м отрицательны (см. табл. 67). Следовательно, такие процессы возможны при температурах ниже некоторой предельной. Исключением является полимеризация циклических углеводородов с напряженным циклом (циклопропан), для которых Д5м>0. Для таких систем понятие 7 пр теряет смысл. [c.266]

    Справедливость этих предположений подтверждена рядом опытов, в том числе упоминавшимися выше опытами по предварительному подтягиванию образцов статической нагрузкой перед циклическими испытаниями. Данные о температурной и частотной зависимости расхождений между тц и Тст, частично упоминавшиеся выше, также косвенно свидетельствуют о разЛичии релаксационных процессов рассасывания локальных перенапряжений при разных режимах нагружения. Об этом свидетельствуют и другие опыты подобного рода опыты в два приема , опыты с изменением времени отдыха в промежутках между нагружениями [713, 714, 724] и другие феноменологические исследования долговечности твердых тел при повторных нагружениях, описанные в обзоре [736] и в серии последующих работ этого направления [748—752]. Здесь мы не будем их подробно анализировать и укажем лишь, что наряду с этими исследованиями определенную ясность в указанную проблему вносят эксперименты, в которых изучается особенность развития магистральных трещин при циклическом нагружении по сравнению со статическим [558, 624—631]. Именно эти эксперименты позволяют судить об изменениях в локализации процесса разрушения при изменении режима нагружения и о роли релаксационных процессов в изменениях кинетики роста трещин при переходе от статического нагружения к циклическому. Анализ соответствующих экспериментальных данных позволяет выделить долю изменений в долговечности при циклическом нагружении по сравнению со статическим за счет изменения коэффициента перенапряжения в вершине трещины, т. е. отделить ее от доли, определяемой эффектами разогрева. Большая чувствительность скорости роста трещин к структурным изменениям и релаксационным процессам, развивающимся в их вершине, демонстрируется рис. 199, на котором показано, как сильно изменяется скорость роста трещины при разгрузках и повторных нагрузках образца [628]. [c.406]


    Для определения количества каждого компонента в образце, когда спектры перекрываются, проводят циклический анализ. [c.166]

    Метод циклического прогрева зернистого слоя дает надежные результаты при больших Кеэ (рис. IV. 19, в). Однако в соответствии с анализом метода, приведенным выше, при Кеэ < 10 достаточно точных данных получить не удалось [87], несмотря на тщательную теоретическую разработку методов исследования. [c.160]

    Средний молекулярный вес фракций смол превышает молекулярный вес соответствующих исходных топлив на 30—50 единиц для топлива ТС-1 и Т-1, на 80—1.30 единиц для топлива ДА. Значения плотности смолистых веществ приближаются к единице. Вычисленные по данным анализа эмпирические формулы указывают на циклическую структуру смол. Условно принимая, что в составе молекулы присутствует лишь один гетероатом, можно, с известной степенью приближения, рассчитать состав полученных фракций смол по содержанию в них сернистых, азотистых и кислородных соединений  [c.64]

    А диаметром может быть использован для сепарации нормальных парафинов от разветвленных или циклических углеводородов поры в этом случае велики настолько, чтобы пропустить углеводороды с прямыми цепями, но не в другие структуры [18]. О сепарации паров двуокиси углерода, ацетилена и ацетона от этилена см. [19]. О фракционировании ароматических углеводородов см. [20].О методах определения гранулометрического анализа лор и результатах его для некоторых адсорбентов см. [21—22]. [c.263]

    Применяют также методы качественного анализа, основанные на построении классов множеств решений задач периодического управления и связей между этими классами в виде необходимых и достаточных условий [58, 60]. Здесь удается показать существование целого класса задач циклической оптимизации, которые не дают преимущества в сравнении с оптимальным стационарным режимом. [c.291]

    Анализ циклического нагружения проводят по суточным диаграммам изменения давления за период от начала эксплуатации до остановки оборудования с целью его диагностирования. [c.335]

    В сернистых концентратах из арланской нефти в количестве менее 1 % от всей смеси найдены спирты, которым приписаны только насыщенные циклические структуры без олефиновых связей [664]. Если даже интерпретация полученных масс-спектров была верна, эти спирты не могут считаться нативными в связи с соображениями, высказанными нами при обсуждении фурановых соединений, описанных в той же работе. Сомнения в правильности идентификации классов соединений в этом анализе, на наш-взгляд, не [c.112]

    Дальнейший анализ проводится при следующих допущениях в качестве элементарных рассматриваются необратимые и обратимые стадии реакции в реакции отсутствуют циклические маршруты. [c.107]

    На основе анализа топологических свойств циклических потоковых графов покажем для любой ХТС алгоритм выбора определенного числа свободных ИП (свободных потоков) и выражения базисных информационных переменных (базисных потоков) через свободные информационные переменные. Информацию о топологических особенностях некоторого циклического потокового графа ХТС представим в форме матрицы инциденций или в форме цикломатической матрицы [С]. [c.213]

    Разработанный на основе анализа топологических свойств циклических потоковых графов алгоритм расчета материальных и тепловых балансов ХТС формализует процесс составления и определения оптимальной стратегии решения систем уравнений балансов и создает объективные предпосылки для автоматизации выполнения указанных операций с помощью ЭВМ при анализе химико-технологической системы на стадиях проектирования и эксплуатации. Наряду с этим предложенный алгоритм позволяет находить точки оптимального размещения контрольно-измерительных приборов для контроля за технологическими потоками ХТС и непрерывно получать информацию о неизмеряемых с точки зрения оперативного контроля значениях технологических потоков системы с целью повышения качества управления технологическими процессами. [c.219]

    Важными для понимания существа каталитических превращений Циклических углеводородов со средним размером кольца явились рентгенографические исследования структур 9-, 10- и 12-членных колец (рис. 30) [203—207]. Рентгеноструктурный анализ этих соединений позволил рассчитать длины С—С-связей, валентные и торсионные углы. Из рассмотрения наиболее устойчивых конформаций этих циклоалканов становится очевидным, сколь большое значение имеют взаимодействия водородных атомов, расположенных внутри 7—10-членных колец. Например, углеродный скелет молекулы циклононана полностью асимметричен и все 18 атомов водорода в нем неравноценны. Шесть внутренних интраанну-лярных атомов водорода сближены в пространстве, при этом в ряде случаев расстояние между ними сокраща- [c.153]


    Формальное дерево циклического потокового графа должно включать число ветвей = р = 9 и число хорд = 5. Так как число потоков, известных по технологическим условиям, также равно пяти, то никаких дополнительных свободных потоков выбирать на основе анализа циклического потокового графа не надо. Поэтому в качестве хорд выбирают дуги графа, которые отвечают известным из технологических условий потокам. Строят формальное дерево графа (рис. У-5, б) и, подключая к ветвям дерева в порядке возрастания номеров [c.221]

    Анализ зарубежных и отечественных исследований циклической подачи потоков в процессе ректификации показал, к сожалению, что полученные результаты достаточно противоречивы, а отсутствие публикаций затрудняет эффективное использование циклических режимов работы в аппаратах промышленных размеров. [c.219]

    Сигналы, являющиеся возмущениями, могут иметь различную форму случайную, циклическую, ступенчатую или импульсную. Указанные формы входных сигналов и соответствующие им реакции системы (кривые отклика) приведены на рис. 1Х-4. В дальнейшем ограничимся лишь ступенчатой и импульсной формами возмущающих сигналов, что упрощает анализ состояния исследуемой системы, а также вследствие сходства кривых отклика ее на такие возмущения с кривыми, характеризующими функции I и Е. [c.242]

Таблица 4.10. Данные радиометрического анализа продуктов алкилирования бензола циклическими спиртами и олефинами [1, с. 3 130, с. З"] Таблица 4.10. Данные радиометрического <a href="/info/1242365">анализа продуктов алкилирования</a> бензола <a href="/info/61635">циклическими спиртами</a> и олефинами [1, с. 3 130, с. З"]
    Основная цель системного подхода — раскрытие реального механизма функционирования рассматриваемой циклической адсорбционной системы с учетом ее управления для облегчения адаптации к изменяющимся внешним условиям. Анализ циклических адсорбционно-десорбционных процессов показывает, что современные установки могут служить объектом системного анализа. Во-первых, адсорбционно-десорбционный процесс — это сложная система, которая, с одной стороны, является составной частью более общей химико-технологической системы, определяющей цели и ограничения режимов функционирования с другой стороны, адсорбционно-десорбционная установка представляет собой сложную совокупность процессов в системе периодически повторяющихся в определенной последовательности взаимосвязанных явлений. Во-вторых, задачи оптимизации адсорбционной установки совпадают с целью системного анализа — выбрать наилучшие пути приспособления исследуемой системы к постоянно меняющимся и не вполне определенным условиям. Таким образом, подтверждается принципиальная возможность и необходимость системного подхода к решению задачи оптимизации адсорбционных установок.  [c.8]

    Анализ полученной зависимости показывает, что на начальной стадии кинетики коэффициент внутреннего массопереноса прямо пропорционален /о и обратно пропорционален л/Т, т. е. при постоянном коэффициенте внутренней диффузии D коэффициент р, - -св, и, значит, на начальной стадии кинетики диффузионный процесс полностью лимитируется внешним подводом вещества к гранулам адсорбента. Аналогичные закономерности отмечались в работе [25] для адсорбционных циклических процессов. Из формулы (2.1.117) также следует, что на начальной стадии коэффициент р, обратно пропорционален радиусу зерна R. [c.62]

    Для задач, возникающих прп оптимизации нестационарного состояния катализатора, принцип максимума лишь в редких случаях допускает аналитическое решение. Иногда удается показать, что х, являющийся решением задачи (2.15) — (2.18), не удовлетворяет необходимым условиям оптимальности, что означает / >/ [43]. Чаще всего необходимые условия оптимальности позволяют лишь качественно характеризовать оптимальное решение и (или) построить численные алгоритмы оптимизации. В связи с этпм целесообразно использовать методы, основанные на анализе предельных случаев, и сформулировать достаточные условпя эффективности периодических режимов. Так, чтобы показать эффективность циклического процесса, часто достаточно проанализировать поведение системы при очень больших и очень малых по сравнению с характерным временем системы значениях периода, которым соответствуют, как уже обсуждалось, квазистационарный и скользящий режимы. При квазистационарном ре киме в силу большой продолжительности цикла система будет удовлетворять уравнению (2.15) нри всех 0единственность стационарных состояний, значение управления и t) однозначно определяет состояние [c.50]

    Качественный анализ эффективности циклического управления входной температурой. Пусть в неподвижном слое катализатора протекает одна обратимая экзотермическая реакция, скорость которой определяется выражением [c.128]

    Прогнозирование в разрезе пород-коллекторов и пород-флюидоупоров может осуществляться с помощью циклического анализа. Циклическое развитие седиментационных бассейнов обусловливает закономерную повторяемость в разрезе коллекторских и экранирующих толщ. Так, учет цикличности разного порядка при определении положения в разрезе перерывов и размывов в осадконакоплении позволяет выявить зоны распространения коллекторов. [c.62]

    В большом цикле работ Го и сотр. [71—73, 82, 83, 86—93] исследованы превращения насыщенных углеводородов (Сб-дегидроциклизация, скелетная изомеризация, гидрогенолиз циклопентанов, гидрокрекинг) в присутствии различных платиновых и других металлических катализаторов. Подробно изучены [73] изомеризация 2-метил-2- С-пентана, З-метил-З- С-пентана и гидрогенолиз метил- С-циклопентана при 270 °С в присутствии (10% Pt)/АЬОз. Состав продуктов превращения существенным образом отличался от состава катализатов, полученных ранее в присутствии (0,2% Pt)/Al203. Анализ полученных результатов привел к заключению, что перемещение и распределение метки С в продуктах реакции обусловлено рядом последовательных перегруппировок в адсорбированном на поверхности катализатора углеводороде перед стадией его десорбции в объем. Исходя из начальных концентраций продуктов реакции, в каждом случае обсуждается вероятность циклического или стадийного механизма сдвига связей. При этом важную роль играет дисперсное состояние активной металлической фазы — в данном случае платины. [c.203]

    Исследование превращений изомерных гексанов и метилциклопентана в присутствии (10% Рс1)/А120з показало [87], что основной реакцией является селективное деметилирование гексанов, а в случае метилциклопентана—гидрогенолиз пятичленного цикла. Вместе с тем, как и в присутствии Pt-катализаторов, происходит изомеризация гексанов. Анализ начального распределения продуктов реакции с использованием молекул, меченных С, показал, что структурная изомеризация гексанов проходит по циклическому механизму. В дальнейшем аналогичные превращения были исследованы [88] в присутствии Pd-, Pt-, а также нового вида катализаторов— сплавов Pd—Au и Pt—Au, осажденных па АЬОз (содержание металла везде 10%). Сплавы палладия менее активны, чем сам Pd, даже после активации воздухом при 400 °С. Основной реакцией в присутствии (Pd— Au)/АЬОз, как на Pd/АЬОз, является селективное деметилирование механизм изомеризации гексанов — циклический. Несколько неожиданный результат был получен в случае Pt-катализаторов при переходе от Pt к сплаву 15% Pt — 85% Au. В то время как на Pt/АЬОз изомеризация н-гексана проходит главным образом по механизму сдвига связей, на (Pt—Au)/АЬОз — по циклическому механизму. Аналогично гидрогенолиз метилциклопентана на указанном сплаве Pt—Au проходит неселективно, в то время как на катализаторе Pt/АЬОз — почти исключительно по неэкранированным С—С-связям цикла. Полученные результаты привели к выводу, что высокая дисперсность Pt и присутствие в непосредственной близости от атомов Pt ионов кислорода являются причинами изомеризации н-гексана по циклическому механизму и неселективного гидрогенолиза метилциклопентана [88]. [c.204]

    На рис. 8 изображен график, полученный Мартиным и Санкиным, в котором отложены значения Г (з, М) и Р (с/, М) для большого числа циклических углеводородов. Для анализа при помощи хроматографии готовится ароматический концентрат и измеряются его плотность й, удельная дисперсия 5 и молекулярный вес М. Далее вычисляются значения функции Р (5, М) и Р (с1, М). Наконец, Лд и Лн определяются пли графически или по формуле. [c.384]

    До сих нор еще нет хорошего объяснения изменений химического состава, которое, возможно, вызывает изменения физических свойств. Известно, как отмечалось ранее, что состав продуктов не многим отличается от состава остатка, что отношение углерода к водороду увеличивается по мере того как вещество делается менее жидким это можно легко объяснить увеличением количества циклических структур в молекуле. Однако, как было показано Химманом и Барнетом (Hillman and Barnett [26]), это увеличение соотношения углерода и водорода наблюдается одновременно с увеличением количества серы, азота и кислорода. Данные табл. XII-3 и ХП-4 показывают, что такое увеличение содержания посторонних элементов встречается во всех изучавшихся случаях, кроме содержания серы в крекинг-остатке. Следует признать, что анализы были сделаны в большей степени на асфальт содержащих остатках, чем на природных асфальтах, но данные все же убедительны. [c.540]

    Весьма вероятно, что удастся обобщить и систематизировать из-м ерения абсорбции инфракрасной части спектра и получить быстрый метод качественного анализа углеводородных смесей. След я числу классов углеводородов, представленных в смеси, числу, которое ниже Ш1И равно пяти (парафиновые, олефиновые, циклические насыщенные, гидроароматические и ароматические), можно установить равное число уравнений, связывающих концентрации различных, представленных в смеси классов углеводородов, зная уравнение, выведенное из измерений 1) дисперсии рефракции, 2) магнитного вращения плоскости поляризации, 3) критической температурьг растворимости в анилине, 4) критической температуры растворимости в беязило-Бом спирте, а также имея в виду равенство — [c.110]

    Дорогое II. H., Цирлин А. М. Применение метода усреднения Н. Н. Боголюбова для анализа циклических режимов химических реакторов // Динамические режимы в химии и химической технологии. Новосибирск, 1979. С. 76-82. [c.367]

    Как показал теоретический анализ, в области низких концентраций СО скорость реакции возрастает с увеличением содержания СО, а при высоких значениях концентрации скорость падает при уве-личер1ии этой концентрации. При промежуточных значениях концентраций СО существуют три стационарных состояния системы, два из которых устойчивы и одно неустойчиво. Устойчивым состояниям соответствуют максимальная и минимальная скорости окисления. Пусть концентрация СО в смеси варьируется по синусоидальному закону, в котором (Feo)о — средняя по времени концентрация СО в смеси. Пусть величина (Feo) о выбрана так, что стационарное состояние системы соответствует нижней устойчивой ветви скорости. В этом случае возможно существенное увеличение скорости реакции нри переходе к циклическому изменению концентраций смеси. Это произойдет тогда, когда амплитуда и частота вынужденных колебаний таковы, что для части периода колебаний нестационарная концентрация будет соответствовать верхней ветви скорости реакции. Как видно из рис. 2.11, нри неизменных значениях амплитуды колебаний и начальной концентрации СО в области безразмерных частот (о 0,45 наблюдается резонансное поведение системы, и средняя по времени скорость реакции проходит через максимум в нестационарном режиме W = 0,262. Это значение скорости в десять раз превышает соответствующее значение скорости в стационарном режиме и в два раза — значение скорости в квазистационарном циклическом режиме (ш 0). Такое поведение обусловлено динамическими взаимодействиями внутри системы, связанными с вынужденным переводом покрытий поверхности катализатора СО от нижнего значения к верхнему. При больших значениях часто средние но времени значения скорости приближаются к стационарным, а при малых — к квазистацнонарным. Заметим, что для рассматриваемого примера имеет место также экстремальная зависимость наблюдаемой скорости окисления СО от величины амплитуды колебаний при фиксированной частоте колебаний. [c.62]

    Далее приведены примеры численного расчета значений максимальной температуры внутри слоя катализатора и степени превращения па выходе пз реактора прп значениях параметров, соответствующих рис. 4.4. Как видно из рис. 4.11, существует критическое значение длительности цикла t , выше которого происходит затухание процесса. При 1с< 1с величина Гтах слабо зависит от продолжительности цикла, и лишь в области малых значений t наблюдается небольшое уменьшение макснмальной температуры. Гтах достигает минимальных значений при О, т. е. в скользящем режиме. Численный анализ показал, что максимальная температура в слое и средняя за цикл степень превращения х практически не зависят от величины условного времени контакта х , если только величина ТкСТк, где Тк определяет границу существования высокотемпературного устойчивого циклического режима. Увеличение т при прочих неизменных условиях лишь увеличивает температурное и концентрационное плато в слое, не изменяя выходные характеристики процесса. [c.114]

    Таким образом, в результате анализа модельной задачи показано, что оптимальным является кусочно-постояппое управление, при котором входная температура периодически изменяется от максимально до минимально допустимых значений. При указанных значениях параметров наилучший стационарный режим достигается при входной температуре V = —1,84, которой соответствует степень превращения на выходе 0,791. Лучшие показатели при циклическом изменении температуры достигаются при значительно более низкой средней температуре [и = —2,74), и средняя за цикл степень превращения увеличивается до 0,865 (i = 0,9). Отметим, что для достижения выхода I = 0,865 в стационарном режиме необходимо трехкратное увеличение длины слоя катализатора. [c.135]


Смотреть страницы где упоминается термин Циклический анализ: [c.152]    [c.65]    [c.157]    [c.353]    [c.394]    [c.75]    [c.514]    [c.572]    [c.372]    [c.59]    [c.124]    [c.217]    [c.41]    [c.117]    [c.123]   
Методы практической биохимии (1978) -- [ c.166 ]




ПОИСК







© 2025 chem21.info Реклама на сайте