Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксидные слои

    Алюминий принадлежит к числу электроотрицательных металлов его стандартный потенциал iai - /ai = — 1.66 В. Поэтому в активном состоянии он легко подвергается коррозии. Однако в тех средах, которые способствуют его пассивированию, на поверхности алюминия образуется тонкая оксидная пленка — АЬОз или А Оз-НгО. Она предохраняет алюминий от коррозии во многих нейтральных и слабокислых растворах (например, органических кислотах), а также в атмосферных условиях, но в недостаточной степени. Искусственное наращивание более толстых оксидных слоев на поверхности алюминия возможно путем электрохимической обработки на аноде. Электролиты для анодного окисления алюминия принято подразделять на две группы. [c.79]


    Имеется, однако, много примеров, когда потенциал иассивации нельзя связать с образованием ни одного из известных для данного металла оксидов. Так, иапример, для железа потенциал пассивации < п=+0,58 В, в то время как наиболее положительный из всех возможных потенциалов железооксидных электродов, отвечающий системе Fe, FeO, FeaOa, равен всего лишь 0,22 В. Казалось бы, что, поскольку железный электрод здесь является анодом, такая разница обусловлена значительной анодной поляризацией. Но такое объяснение отпадает, потому, что потенциал активации железа также равен +0,58 В, хотя железный электрод поляризуется в данном случае катодно. В связи с этим предположили, что, несмотря на преимущественное растворение железа в виде двухвалентных ионов, оксидная пленка может образоваться при участии иоиов железа с валентностью более трех. Это возможно при условии постепенного окисления железа избытком кислорода в поверхностном слое. В подобном оксидном слое могут поэтому находиться наряду с оксидами F O и РегОз также высшие оксиды, наиример КеОг, которым отвечают более положительные потенциалы. Аналогично объясняется и пассивация никеля. [c.482]

    Чтобы получить ответ на этот вопрос, приходится обратиться к рассмотрению кристаллического строения алюминия, железа и их оксидов. Структура элементарной ячейки, или межатомные расстояния, в кристаллах алюминия и его оксида приблизительно одинакова поэтому оксид алюминия, образующийся на поверхности металла, крепко пристает к находящемуся под ним некорродированному алюминию. Окисленная поверхность образует защитный слой, препятствующий проникновению кислорода к металлу. Анодированная алюминиевая кухонная утварь имеет оксидный слой повышенной толщины, который получают, помещая алюминиевый предмет в условия, особенно благоприятные для протекания коррозии для этого его превращают в анод, на котором проводится электрохимическая реакция. [c.190]

    Если энергия связи ПАВ с металлом или с уже образовавшимися на металле хемосорбционным или оксидным слоем больще, чем энергия связи молекул ПАВ с молекулами среды, то на металле образуются адсорбционные и хемосорбционные пленки ПАВ. Энергия связи ПАВ с металлом зависит в равной степени как от химического строения, полярности и донорно-акцепторных свойств ПАВ, так и от свойств металла — знака и величины заряда на его поверхности, ее физического состояния. [c.208]

    Структура поверхности полированных металлических деталей схематически показана на рис. 4.1. Сверху расположен оксидный слой 1. Следует подчеркнуть, что на твердой поверхности после ее более или менее длительного контакта с воздухом (особенно при высоких температурах), как правило, образуются оксидные пленки толщиной от 0,01 мкм до нескольких миллиметров. Они имеют различную прочность и адгезию к поверхности металла и в ряде случаев хорошо защищают ее от коррозии. [c.180]


    Серебристо-белый привлекательного вида металл Хорошо полируется. Поверхностный оксидный слой поддается окрашиванию (анодированный алюминий) [c.160]

    Остановимся на некоторых особенностях строения и роста фазовых оксидных слоев. По структуре и свойствам эти слои делят на сплошные (плотные) и пористые. Примером сплошных слоев могут служить пассивирующие слои на тантале, цирконии, алюминии, ниобии. Сплошные слои имеют стеклообразную или аморфную структуру, обладают достаточно большим электрическим сопротивлением и иногда проявляют выпрямляющее действие, проводя ток лишь тогда, когда металл является катодом. Типичным примером пористых слоев могут служить оксидные и гидроксидные слои на кадмии, цинке, магнии. Эти слои имеют кристаллическую структуру и низкое электрическое сопротивление (порядка нескольких омов). Возможно также образование слоев смешанного типа. Так, на алюминии в сернокислых растворах можно наблюдать сплошной слой со стороны металла и пористый со стороны раствора. Кроме того, при поляризации электрода или во времени могут происходить переход одного типа слоя в другой, кристаллизация аморфных слоев, изменение их состава и структуры. [c.368]

    В пленочной теории, по которой наступление пассивного состояния связано с поверхностным оксидным слоем, большое внимание уделяется его возникновению и формированию. Основными факторами, определяющими этот процесс, являются потенциал металла, а также концентрации ионов металла и ОН- Потенциал металла должен быть достаточно положительным для того, чтобы обеспечить устойчивое состояние данного оксида. Концентрации металлических и гидроксильных ионов должны быть достаточно велики, чтобы стало возможным образование соответствующих основных солей или гидроксидов, последующие превращения которых приводят к пассивирующим оксидам. Пассивность должна наступать тем легче, чем выше электродная поляризация ири анодном растворении металла и чем ниже скорость удаления ионов металла от поверхности электрода. [c.483]

    Поскольку примеси в металле играют роль локальных элементов, можно ожидать, что их уменьшение значительно повысит коррозионную стойкость металла. Поэтому, например, алюминий или магний высокой чистоты более устойчивы к коррозии в морской воде или кислотах, чем технические металлы, а специально очищенный цинк менее растворим в соляной кислоте, чем технический. Однако ошибочно полагать, что чистые металлы вообще не подвержены коррозии, как считалось много лет назад, когда была предложена первая электрохимическая теория. Как мы увидим далее, локальные элементы возникают также при изменениях температуры или других параметров среды. Например, на поверхности железа или стали, покрытой пористым слоем ржавчины (оксиды железа), в аэрированной воде отрицательными электродами являются участки поверхности железа в порах оксидного слоя, а положительными — участки ржавчины, открытые для соприкосновения с кислородом. Отрицательные и положительные электродные участки меняются местами и перемещаются по поверхности в ходе коррозионного процесса. [c.22]

    К этому количеству следует добавить потерю массы металла за счет трения, так как каждый трущийся участок проникает сквозь оксидный слой и снимает металл в количестве, пропорциональном площади контакта и длине пути. В этом случае площадь микровыступа играет большую роль, чем ее ширина — ведь [c.413]

    Таким образом, металлы, которые в ряду стандартных потенциалов находятся отрицательнее этого потенциала, окисляются ионами водорода из воды. К таким металлам относятся прежде всего щелочные и щелочноземельные металлы, которые энергично реагируют с водой. Некоторые другие металлы, например алюминий, магний и цинк, весьма медленно растворяются в воде из-за высокого перенапряжения процесса выделения водорода на этих металлах. Важную роль при этом играет пассивация, вызванная образованием тонкого и прочного оксидного слоя на поверхности металла. [c.417]

    ПАССИВНОСТЬ МЕТАЛЛОВ. АНОДНЫЕ ОКСИДНЫЕ СЛОИ [c.365]

    Таким образом, для понимания механизма пассивации необходимо изучение закономерностей образования, роста и свойств оксидных слоев. Для этого используют разнообразные электрохимические, а также оптические методы (см. 17), из которых особый интерес представляет эллипсометрический метод, позволяющий исследовать состояние поверхности металла непосредственно при измерении потенциостатических поляризационных кривых. Был разработан иодидный метод отделения пассивирующей пленки от металла, который основан на том, что раствор 1а+К1 проникает через поры пленки к поверхности металла и растворяет его. Отделенный от металла тонкий пассивирующий слой может быть далее подвергнут электронно-микроскопическому ис- [c.367]


    При рассмотрении явлений на электродах,, покрытых фазовыми оксидными слоями, следует учитывать, что в таких системах возникает две границы раздела металл — слой оксида (или гидроксида) и слой оксида — электролит. [c.368]

    Полученные данные лншь частично > арактеризуют активное, пассивное II трапспассивпое состояния металлов и определяют условия, при которых можно ожидать реализации каждого из них. Они ничего не говорят о причинах перехода металла из активного состояния в пассивное и из пассивного е1 транспассивное. Для объяснения явления пассивности были предложены две теории — пленочная и адсорбционная. В пленочной, или фильмовой (Кистяковский), теории пассивности, берущей начало от Фарадея, предполагается, что переход металла из активного состояния в пассивное вызван образованием на его поверхности тонкого, обычно оксидного, слоя, отделяющего металл от окружающей среды и препятствующего, таким образом, его растворению. Образующийся оксидный слой имеет толщину в несколько молекулярных слоев, и его можно рассматривать как фазовый оксид. Чем совершеннее структура оксидного слоя, чем меньше в нем разрывов и дефектов, тем полнее пассивация и тем меньше скорость растворения металла в пассивном состоянии. Одним из доказательств справедливости пленочной теории служит от факт, что для многих металлов, например для меди, [c.481]

    При тех потенциалах, которые металлы приобретают после контакта с кислородом воздуха, оксиды и гидроксиды являются термодинамически устойчивыми формами. Это не означает, однако, что фазовые слои, действительно, возникают на электроде после контакта его с атмосферой воздуха и погружения в раствор. Сравнение свойств оксидных слоев, возникающих при взаимодействии металлов с газообразным кислородом, и оксидных слоев, образующихся на границе металл — электролит, часто обнаруживает их сильное различие, что связано с участием компонентов раствора в построении оксидного слоя. Различные методы исследования позволяют определить некоторые средние параметры оксидных пленок, которые, как правило, не являются однородными. [c.368]

    Рост непористых слоев происходит, если через эти слои возможна диффузия ИОНОВ растворяющегося металла и электронов, анионов, атомов кислорода или гидроксильных групп. Согласно теории К. Вагнера движение ионов определяется градиентом их электрохимического потенциала внутри пассивирующего слоя. При небольшой толщине оксидного слоя внутри него возникает электрическое поле большой [c.368]

    В, при котором вследствие процесса обмена местом оксидный слой приобретает необратимые свойства В, при котором воз- [c.372]

    Под оксидным слоем находится упомянутый ранее псевдоаморфный слой 2, по свойствам отличный от остальной части твердого тела он более твердый, легче растворяется в жидкой [c.180]

    В трибохимических процессах участвует Ш1слород, раство-ренный в топливе и содержащийся в гетероциклических соединениях [180]. Увеличение содержания растворенного в топливе кислорода усиливает интенсивность окисления трущихся поверхностей, что приводит к увеличению их износа (рис. 5.18, 5.19). При концентрации кислорода менее 0,10—0, 16% (об.) в гидроочищенных и 0,2—0,5% (об.) в прямогонных топливах вследствие недостаточной скорости образования оксидного слоя на поверхностях пар трения отмечается их схватывание [181— 183, 186]. Закономерное улучшение противоизносных свойств топлив при их деаэрации или азотировании отмечается в работе [184] и подтверждается результатами испытаний топлив на насосах НР-21Ф2 по междуведомственному методу, приведенными ниже  [c.167]

    Селективный солнечный поглотитель имеет высокую поглощательную способность при малых длинах волн и низкую степень черноты в длинноволновой области Такими свойствами обладает металлическая новерхность с тонким полупроводниковым покрытием. Используются тонкие медные, никелевые или хромовые оксидные слои, образованные травлением или электрохимической обработкой покрытой медью стали (рис. 9). Можно также использовать гокрытия, полученные на алюминии в результате напыления и обжига и образованные осаждением в вакууме пленки. Такие по1)С 5хпости используются в коллекторах солнечного излучения, а также в космических кораблях, исследующих отдаленные районы солнеч- [c.464]

    Существует предположение, что возникающие при трении локальные перегревы металла приводят к его окислению, после чего происходит истирание поверхностного оксидного слоя [89]. Хотя трение несомненно, вызывает локальный разогрев до высоких температур, разрушение при фреттинг-коррозии обусловлено не только высокотемпературным окислением. Это подтверждается следующими факторами увеличением разрушения при температурах ниже комнатной снижением разрушения при высоких частотах, когда температура на поверхности максимальна тем, что при фрет- [c.168]

    После наступления пассивности восстановление пассиватора в отсутствие растворенного кислорода продолжается с низкой скоростью, эквивалентной /пае (<0,3 мкА/см — значение рассчитано из данных по скорости коррозии железа в хроматных растворах). При этом постепенно накапливаются оксиды железа и продукты восстановления хроматов. Возрастанию скорости восстановления способствуют факторы, увеличивающие /пао напр"Ьмер рост активности ионов Н+, повышение температуры, присутствие ионов I . Экспериментально установлено потребление хромата падает со временем, отчасти потому, что образующийся со временем вторичный оксидный слой уменьшает площадь поверхности, на которой должно происходить возобновление пассивирующей пленки. [c.262]

    Области диаграммы, в которых устойчиво существуют РегОз и Рез04, иногда называют областями пассивности, исходя из предположения, что на железе при этих значениях и pH образуются защитные оксидные пленки. Это справедливо только в той степени, в какой пассивность может быть обусловлена диффузионным барьером, создаваемым оксидным слоем (определение 2 в гл. 5). В реальных условиях в средах типа растворов Н2304 или N03 линия, отвечающая Фладе-потенциалам, выше которых наблюдается пассивность железа, параллельна линиям а и 6 и пересекает = 0,6 В при pH = 0. Это указывает, что пассивирующая пленка (определение 1 в гл. 5) видимо не представляет собой равновесный стехиометрический оксид железа, как это уже отмечалось в разд. 5.5 .  [c.404]

    Препараты для исследования готовят специально. Так, например, полированную пластинку кремния травят в НР для снятия оксидного слоя, а затем осаждают на ней тонкий слой меди из Ъ%-ного раствора Си304 отжигают образец при 950°С в водороде (300—900°С). В процессе отжига медь концентрируется на дислокациях. При изучении пластинки кремния под инфракрасным микроскопом видны дислокации, декорированные медью. [c.124]

    Изменение свойств оксидного слоя при поляризации электрода было обнаружено при изучении пассивации никеля в кислых растворах по-тенциостатическим и эллипсометрическим методами. В активной области на поверхности электрода образуется предпассивирующий оксидный слой толщиной в несколько нанометров. При потенциале пассивации толщина этого слоя не изменяется, тогда как показатель преломления и коэффициент светопоглощения претерпевают резкое изменение. Предполагается, что оксидный слой при потенциале пассивации превращается из ионного проводника в электронный проводник. При этом диффузия ионов металла через оксидный слой становится невозможной, и процесс растворения металла прекращается. [c.369]

    Проблема структуры и свойств анодных оксидных слоев на электродах относится к числу важнейших проблем электрохимии. Однако даже для простейших модельных систем эта проблема далека от разрешения, что связано с ее большой сложностью и многоплановостью. Наиболее подробно строение и свойства оксидных слоев исследованы на металлах группы платины. На этих металлах было обнаружено образование слоев адсорбированного кислорода, хемосорбционных оксидных слоев, полислоев фазового оксида, а также подползание кислорода под поверхностный слой металла. Для адсорбционных и хемо- [c.371]

    В изложенной схеме не учитывается участие ионов раствора в оксидном слое. Такое участие становится ярко выраженным при высоких анодных потенциалах ,>1,6 В, где анодная оксидная пленка на платиновых металлах формируется с участием кислорода, ионов фона и продуктов их разряда, причем компоненты раствора включаются в пленку необратимо. Кислородные пленки на платине при потенциалах окисления выше 1,6 В включают в свой состав три формы хемосор-бированного кислорода, которые отличаются друг от друга кинетикой образования и восстановления, а также энергией связи с поверхностью. Характерно, что зависимость адсорбции анионов и катионов от потенциала в области высоких анодных потенциалов носит полиэкстре-мальный характер, и часто максимуму адсорбции катионов отвечает минимум адсорбции анионов и наоборот. На глубоко окисленных платиновых металлах обнаружена адсорбция органических соединений различных классов (Л. А. Миркинд, М. Я. Фиошин). [c.372]


Смотреть страницы где упоминается термин Оксидные слои: [c.428]    [c.181]    [c.28]    [c.284]    [c.327]    [c.4]    [c.368]    [c.369]    [c.369]    [c.369]    [c.372]    [c.372]    [c.4]    [c.368]    [c.369]    [c.369]   
Курс общей химии (1964) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Оксидный



© 2025 chem21.info Реклама на сайте