Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергией обмен и скорость реакций

    Эта величина достаточна, чтобы реакция На Ч-- Ог могла пройти до конца. Было показано, что относительно медленная реакция типа На О2 ->-20Н является достаточно быстрой, чтобы служить в качестве источника радикалов, и примерно в 10 раз более быстрой, чем диффузия радикалов в реакционную зону. Кистяковский и Кид нашли величину такого же порядка для ширины зоны, но установили, что недостаточный обмен поступательной, вращательной и колебательной энергий дает менее эффективную величину для газов, меньшую начальную плотность и заметно большую скорость реакции. [c.410]


    Однако в большинстве случаев увеличение скорости реакции, наблюдаемое в присутствии катализатора, связано с уменьшением энергии активации Е данной реакции. Для того чтобы это имело место, катализатор должен изменить свойства молекул одного из реагирующих веществ, вступив с ним в химическое соединение. При гомогенном катализе происходит либо взаимодействие катализатора с одним из реагирующих веществ с образованием молекулярного соединения, либо обмен электроном между катализатором и той молекулой, на которую он оказывает свое влияние. При гетерогенном катализе происходят сходные явления. Когда молекула одного из реагирующих веществ [c.19]

    В одно из обменивающихся веществ вводят в качестве метки радиоактивный или стабильный изотоп, а затем в ходе реакции измеряют изменение количества меченых атомов в другом веществе. Реакции электронного обмена особенно интересны тем, что константа скорости обмена электронов пропорциональна току обмена соответствующей электрохимической реакции (разд. 31.5.3). Примечательно, что все участники обменной реакции имеют одинаковый знак заряда, в результате чего между ними действуют значительные кулоновские силы отталкивания. Несмотря на это, реакции электронного обмена протекают с большой скоростью, период полупревращения составляет доли секунды. Высокая скорость этих реакций объясняется прежде всего тем, что мало различаются размеры координационных сфер участников реакции, что характерно как для анионов оксокислот марганца, так и для цианидных комплексов железа. В энергию активации такого рода реакций вносят вклад следующие компоненты энергия, необходимая для преодоления кулоновского отталкивания, энергия выравнивания размеров координационной сферы и энергия, связанная с туннельным переходом электрона от одного участника реакции к другому. Энергия, связанная с различием размеров координационной сферы, качественно может быть оценена следующим образом. Прежде чем произойдет адиабатический электронный переход (т. е. переход с минимальной затратой энергии), должны стать почти одинаковыми расстояния между центральным атомом и лигандами для реакции (1606), например, расстояние между Ре + и Н2О должно увеличиться настолько, чтобы сравняться с расстоянием между Ре2+ и Н2О. Для такого изменения расстояния необходима затрата некоторой энергии (энергии активации). Очевидно, реакции с электронными переходами протекают особенно быстро в том случае, если эти расстояния мало отличаются для соединений с различной степенью окисления. [c.203]


    Время жизни связано с константами скорости реакций для рассматриваемого случая кк— Нк, и обе величины находятся в зависимости от потенциального барьера (энергии активации) обменной реакции и температуры. Из теории активного комплекса известна следующая зависимость константы скорости  [c.41]

    Применение теории кристаллического поля позволяет дать более подробную характеристику способности к обмену лигандами. Если энергия расщепления кристаллическим полем исходного комплекса много больше аналогичной энергии для активированного комплекса, то он будет реагировать медленно если различие мало, то реакция будет протекать быстро. Такой характер изменений скорости реакций связан с увеличением энергии активации за счет энергии расщепления кристаллическим полем. [c.276]

    Активные места ферментов и реагируюш,ие вещества образуют цепочки или циклы ( цепи перераспределения связей ), по которым в результате перемещения протонов и электронов синхронно происходит изменение кратности связей, что и обусловливает высокую компенсацию энергии разрыва старых связей и резкое снижение энергии активации реакции. Фермент строго ориентирует молекулы реагентов вдоль координаты реакции, что повышает число эффективных столкновений приблизительно в 1000 раз. Молекулы реагирующих веществ под действием ферментов переходят в наиболее реакционноспособные формы, чаще всего ионные, что еще в 1000 раз увеличивает скорость реакции. Чтобы реагирующее вещество перешло в наиболее реакционноспособное состояние, необходим дополнительный резерв энергии. Одним из источников этой дополнительной энергии является многоточечная адсорбция реагирующей молекулы на ферменте с использованием части энергии адсорбции на перестройку молекулы. Второй возможный путь повышения энергоемкости системы указан Кобозевым — это реализация в катализе энергетического механизма активации. Кобозев подчеркивает, что катализ рассматривается как обмен связями или электронами, происходящий в условиях статистического и энергетического равновесия с внешней средой. Эта валентная форма катализа считается столь универсальной, что обычно даже не ставится вопрос о существовании какой-либо другой его формы. А между тем эта другая форма катализа существует и весьма широко представлена в виде биологического ферментативного катализа, охватывающего огромную область каталитических превращений в живом веществе. Валентный механизм каталитического действия нельзя признать вполне общим и должна существовать иная, весьма мощная форма каталитической активации, реализующаяся в биокатализе. [c.117]

    В связи с этим Аррениус выдвинул идею, согласно которой условие эффективности столкновений состоит в том, что участвующие в них молекулы должны иметь повышенный запас энергии и что любой реакции предшествует превращение определенной части нормальных молекул в особое, активное состояние. Откуда же черпают активные молекулы необходимую избыточную энергию Напомним, что молекулы газов находятся в непрерывном хаотическом тепловом движении. Их энергии и скорости неодинаковы. При столкновениях молекул друг с другом происходит обмен энергиями и осуществляется определенное распределение молекул по энергиям. Таким образом, активные молекулы возникают из нормальных в результате случайных благоприятных столкновений. Статистическая термодинамика показывает, что благодаря огромному числу молекул в реальных телах случайный на первый взгляд характер распределения молекул по скоростям представляет собой строгую закономерность. Представления о существовании некоторого промежуточного состояния па пути реакции сохранились и в современных теориях. [c.237]

    Реакция пропилена с дейтерием изучалась лишь в интервале температур 88—128°, при этом никаких значительных отклонений в протекании реакции не наблюдалось (см. табл. 20). На основании хода реакции обмена в олефине при 88° можно предположить, что обмен в олефинах, по-видимому, происходит только последовательно, и скорость реакции обмена мало зависит от температуры. Разность энергий активации Еое—Еь равна примерно [c.401]

    В общем случае, когда в активации молекул и обмене энергии.принимают участие также внутренние (колебательные и вращательные) степени свободы, проведение расчетов скорости реакции с учетом нарушений равновесного распределения представляет большие трудности. Современная теория скоростей элементарных химических реакций в условиях нарушенного равновесного распределения энергии кратко рассмотрена в 12. [c.150]

    Обмен энергии в моно молекулярных реакциях. Константа скорости реакции второго порядка Ад зависит от природы партнера соударения, поскольку скорость активирующего соударения АВ Ц- М = АВ М определяется взаимодействием частиц АВ и М. Ниже приведены относительные эффективности активирующих столкновений раз.личных газов в реакции НА + М = 2 он ч- М [178, стр. 316] [c.233]


    Как мы видели выше, скорость обменной бимолекулярной реакции в зависимости от соотношения скоростей колебательной релаксации и собственно химической стадии реакции выражается различными формулами. В реакциях с малыми энергиями активации, протекающих при низких и средних температурах, лимитирующей является химическая стадия, и скорость реакции выражается обычной формулой ю = А [А] [В], где [А] и [В] — концентрации реагирующих веществ. Это следует также из экспериментальных данных, относящихся к реакциям атомов и радикалов с молекулами. [c.289]

    Обмен энергии в мономолекулярных реакциях. Весьма ценные сведения о процессах передачи энергии дают также исследования мономолекулярных реакций. Как мы видели в предыдущей главе, в кинетике мономолекулярных реакций существенную роль играют процессы активации и дезактивации молекул, протекающие при двойных соударениях (бимолекулярный процесс) и заключающиеся, соответственно, в накоплении или потере активными молекулами части их энергии, в основном имеющей форму колебательной энергии. При этом экспериментальное установление промежуточной области давлений, т. е. области перехода мономолекулярного закона реакции в бимолекулярный, как и непосредственные измерения скорости активации, дают возможность оценить порядок величины вероятности передачи энергии в процессе химической активации или дезактивации, происходящих при соударениях одинаковых или различных молекул. [c.336]

    Детали быстрых процессов, происходящих ниже узкого горла, несущественны. Эти процессы лишь обеспечивают поддержание равновесной заселенности вплоть до этого места. Особенности быстрых процессов, протекающих выше узкого горла, также не сказываются на полной скорости диссоциации. Вообще говоря, эта скорость зависит от равновесной заселенности состояний, поддерживающейся до узкого горла, и регулирует скорость потока через него. При высоких давлениях, если скорость процесса определяется внутримолекулярным обменом энергией, лимитирующей стадией реакции может быть переход (примером такого рода служит безызлучательный переход между электронными состояниями). Часто узким горлом является процесс пересечения критической поверхности (А"->-А ), которая может совпадать с вершиной энергетического барьера, или, если такового нет, узкому горлу может соответствовать конфигурация с минимумом локальной энтропии [117], как показано на рис. 1.15. При очень высоких плотностях лимитирующей стадией может оказаться процесс образования продуктов А -у Р. [c.60]

    Значения среднеквадратичной энергии АЕ (Ео)) также определяются величинами межмолекулярных потенциалов. Первостепенное значение имеет продолжительность столкновения или время жизни образующегося в результате столкновения комплекса. Статистическая модель столкновений предполагает наличие статистического распределения энергий всех осцилляторов молекул А и М в период соударения. Если перед столкновением молекула А сильно возбуждена, а молекула М. остается невозбужденной, то происходит очень эффективный обмен энергией. Как показано в разд. 1.8, в рамках статистической теории скоростей реакции по этой модели можно легко рассчитать значения (А 2( о)) [97]. Оказывается, что всегда - АЕ Ео))> кТ, поэтому значение Р е в уравнении (1.55) равно единице. Подробности, относящиеся в рамках этой модели к величине (Д ( о)), не представляют интереса для реакций диссоциации. Однако эта модель, вероятно, очень важна для процессов химической активации и фотохимических исследований. [c.78]

    В реакции (1.107) штрихами обозначены частицы, содержащие обменявшиеся атомы изотопов. Первые стадии обоих процессов, т. е. определяющие скорость реакций стадии образования А, почти одинаковы. Однако между состояниями А в этих реакциях могут быть некоторые различия, потому что область фазового пространства, занимаемая А, зависит от различных процессов. В реакции (1.106) эта область определяется столкновениями, в реакции (1.107)—вероятностью изотопного обмена. При рекомбинации в области высоких давлений [реакция (1.106)] доля стабилизировавшихся молекул А приближается к единице. Между тем для процесса (1.107) она может быть несколько меньше, если реакция изотопного обмена проходит через небольшой энергетический барьер, обусловленный различием в нулевых энергиях В + С и В + С. Изотопный обмен менее эффективен, чем рекомбинация, также из-за возможности повторной диссоциации А на В С например, изотопный обмен атома О с молекулой N0 происходит медленнее соответствующей рекомбинации. [c.94]

    Эти данные указывают на более легкий обмен с непредельными и с угле-водородами, содержащими водород у третичного атома углерода. Присутствие небольшого количества непредельного углеводорода повышает скорость обмена между изобутаном и катализатором это имеет теоретическое значение. Увеличение содержания непредельного углеводорода от 0,02 до 0,5% повышало скорость в 15 раз. Кажущиеся энергии активации для различных углеводородов изменялись от 10 до 34 ккал, но непосредственно они не связаны со скоростями обмена. Добавление передельного углеводорода не изменяет энергию активации для реакции обмена изобутана. [c.415]

    Кейер и Чижикова [71 ] исследовали окисление окиси углерода на окиси цинка, па окиси ципка, содержащей от 0,5 до 1,2% атомн. лития, и на окиси цинка с 1 % атомн. галлия. Они нашли, что 1) присутствие лития повышает энергию активации электропроводности окиси цинка, 2) адсорбция кислорода понижает электропроводность за счет уменьшения концентрации электронов, 3) примесь лития тормозит адсорбцию окиси углерода и ее окисление на ZnO и 4) энергия активации окисления окиси углерода повышается при прибавлении лития, но остается неизменной при прибавлении галлия. Отсюда был сделан вывод, что механизмы окисления на ZnO и NiO сходны. Литий изменяет электронно-обменные свойства ионов цинка, связанные с наличием дефектов в ZnO и, таким образом, в значительной степени понижает концентрацию свободных электронов. Полученные данные объясняются влиянием примесей, о которых упоминалось ранее. Адсорбция кислорода не определяет скорость. Тем не менее она в значительной степени влияет на стадию, которая определяет скорость окисления. Такой стадией может быть либо адсорбция СО, либо взаимодействие адсорбированного кислорода с окисью углерода из газовой фазы. В последнем случае повышение энергии активации реакции с концентрацией лития приводит к понижению скорости реакции. [c.335]

    Выход из этого положения возможен только на пути экспериментального или теоретического определения неравновесных функций распределения, формирующихся в результате конкуренции релаксационных и химических процессов. Вместо обычных уравнений кинетики, содержащих константы скорости различных элементарных реакций, приходится пользоваться гораздо более общими — так называемыми обобщенными уравнениями Больцмана, описывающими микроскопическую кинетику. Вместо полных концентраций реагентов искомыми величинами теперь являются заселенности различных квантовых состояний молекул. Кинетическими же параметрами служат не константы скорости, имеющие макроскопический смысл, а сечения столкновений, приводящих к обмену энергии или к реакции. [c.50]

    Для обменных реакций с участием групп 8Н, как указывалось, характерно относительно медленное протекание процесса Н-обмена и большие величины энергии активации. Высокое значение АЕа (см. табл. 1) трудно согласовать с предположением, что лимитирующей стадией является образование промежуточного комплекса с Н-связью, ибо этот процесс характеризуется очень низким активационным барьером б. Для подобных систем был сделан вывод [24, 25], что Н-обмен лимитируется актом кооперативного перехода протонов в промежуточном комплексе. Аналогичное заключение сделано в [42] для системы спирт—карбоновая кислота, что подтверждено в этой работе довольно сильным кинетическим изотопным эффектом (/сн/А 1) = 8). Именно в случаях, когда лимитирующей стадией является переход протона, следует ожидать значительного уменьшения скорости реакции при замене протона на дейтон [44]. [c.283]

    Основным фактором, обусловливающим пониженную реакционную способность связи дейтерия по сравнению с водородной, является разница в свободной энергии вследствие влияния массы на скорость преодолевания потенциального барьера и на возможность неклассического проникновения через энергетический барьер. Эта разница складывается в первую очередь из разницы энергии связей для нулевых состояний дейтерия и водорода, равной 1,2—1,5 ккал/моль. Соединения дейтерия, обладающие меньшей энергией, таким образом, более стабильны. Было показано [200,2170], что это различие приводит к различным скоростям реакций разрыва связей водорода или дейтерия. Наблюдалось также различие в равновесии, достигаемом при изотопном обмене. [c.471]

    Данные по обмену Нг— В2 также подчиняются аналогичной зависимости для скорости реакции. На основании этих данных можно утверждать, что обмен происходит между атомами, сорбированными на поверхности. Скорости ортоо-ияра-преврахцсипя водорода и обмена Нг—В2 большей частью сравнимы по величине и имеют одинаковые энергии активации [33а]. [c.547]

    Межцепной обмен в полисульфидных полимерах протекает по. механизму ионного гетеролитического расщепления дисульфидной связи [28]. Скорость реакций межцепного обмена зависит от степени полисульфидности полимера. Исследование кинетики межцепного обмена в массе полисульфидных полимеров позволило определить мольную энергию активации некатализируемого обмена, которая оказалась равной 52,8 кДж/моль. Это значение соответствует энергии активации анионного тиол-дисульфидного обмена низкомолекулярных соединений, осуществленного в полярной среде [29]. [c.561]

    Макроскопическая скорость реакции соизмеримо меньше макроскопической скорости релаксации. При этом микроскопические скорости реакции больше микроскопических скоростей релаксации уже для многих квантовых уровней (а не для некоторых, как было раньше), что означает нарушение равновесного энергетического распределения пе только вблизи порога, но и на нижних колебателып.тх уровнях. Может случиться так, что среди релаксационных процессов имеется процесс, обеспечивающий быстрьп обмен энергией и выравнивание распределения на нижних уровнях. В этом случае распределению по этим состояниям все же можно придать вид равновесной функции Больцмана, н6 не по обычной поступательной температуре Т, а по некоторой температуре Т. Она определяется предварительно из уравнений, учитывающих текущую концентрацию молекул и изменение их энергий в ходе процесса. Тогда уравнения сводятся к обычным Арренну-совым, по содержат не одну, а две температуры, характеризующие как фиктивное полное равновесие, так и фактическое равновесие по быстрой подсистеме. Для реакции мономолекулярного распада (диссоциации) таким быстрым процессом, устанавливающим равновесие, может явиться, например, резонансный обмен колебательными квантами. Зависимость макроскопического коэффициента скорости от значений Т, Т имеет вид [12] [c.98]

    При расчетах использовалась традиционная схема метода классических траекторий для моделирования обменных реакций с участием трех атомов, описанная в главе 3. Значения максимального прицельного параметра, использованные при расчетах, составили 2,5 А для реакций (4.1) и (4.11) и 3,0 А для реакций (4.111). При подборе параметров поверхностей потенциальной энергии колебательные и вращательные квантовые числа молекул задавались в соответствии с больцмановским распределением, колебательная и вращательная температуры предполагались равными поступательной, а значения поступательной энергии реагентов сканировались. При проведении итоговых расчетов сканировались и значения колебательных квантовых чисел рассматриваемых молекул. Константы скорости реакций рассчитывались путем интегрирования полученных сечений по распределению Макс-веллауДля каждой пары значений поступательной энергии и колебательного 96 / [c.96]

    Обмен информацией в программе осуществляется через общий блок /С/Л/ЕГ, переменные которого имеют следующие значения С — массив, содержащий значения констант скорости химических реакций РЕ - массив, содержащий нормированные значения натуральных логарифмов пред-экспонентов констант скорости TN - массив, содержащий показатели степени в температурных множителях констант скорости ЕА — массив, содержащий значения энергий активации констант скорости W — массив, содержащий значения скоростей реакций, вычисляемых в процессе решения LR — целый массив, содержащий коды химических реакций. Каждая реакция кодируется девяткой целых чисел первое — число веществ в левой части уравнения химической реакции, второе — число веществ в правой части этого уравнения, далее сл)едуют номера веществ, участвующих в реакции, записанные слева направо. Р — рабочий массив, используемый для печати ТМ — массив, содержащий значения моментов времени, в которые необходимо печатать решение ТК — температура. К ТЕМ — температура, ккал/моль AML — масштабный множитель N — число ком-понен в кинетической схеме М — число реакций ML — десятичный логарифм AML ITM - текущее значение индекса массива ТМ I N - целый массив, содержащий наименования компонент кинетической схемы. [c.239]

    При исследовании расщепления СН4 на никелевых поверхностях [59] и обмена СН4 с дейтерием на пленке никеля [60] были найдены хемосорбированные радикалы СНг и СН3. Энергия активации 31 ктл1моль соответствует обмену СН4 с дейтерием. Эти соображения, вместе с экспериментальным выражением для скорости реакции предполагают механизм, в котором начальной стадией, определяющей скорость процесса, является хемосорбция СН4 с образованием хемо-сорбированных радикалов СНа и На- Активность катализатора зависит от его предыстории. Вероятно, способствующими этому факторами являются окисление и последующее восстановление поверхности при высоких парциальных давлениях пара и удаление поверхностного углерода, образованного распадом хемосорбированных радикалов СНа. [c.111]

    Они указывают далее, что непосредственно можно сравнивать только скорости реакций обмена с 132 и НО, так жа конверсия параводорода может происходить при столкнов ениях с недостаточной энергией для того, чтобы вызвать обмен. Более низкая константа скорости для обмена с НО по сравнению с Оо является скорее кажуи1ейся, чем истинной. Так как только половина реакционных актов при обмене НО с Н2О приводит к уменьшению количества НО, то истинная константа скорости для НО в 2 раза выше, чем указано в предыдущей таблице. [c.211]

    На aO, полученном термическим разложением a(OH)j в различных условиях, изучена кинетика гидрирования этилена [312]. Показано, что в зависимости от температуры скорость реакции проходит через максимум при 320 К. Температурные области до максимума и после него отличаются значениями энергии активации. В интервале 197-273 К энергия активации составляет 12,6 к Дж/моль, а в диапазоне 373-623 К она отрицательна и равна —16,7 кДж/моль. Порядки реакции для этих температурных областей также различаются и составляют при 273 К по Hj и С2Н4 0,7 и О соответственно, а при 523 К они равны 1,0 и 0,9. Показано, что дейтерирование этилена при 523 К сопровождается изотопным обменом в этане и этилене, а при 273 К образуется лишь dj-этан. Это свидетельствует о том, что при пониженных температурах медленной стадией является присоединение первого атома или иона водорода к молекуле зтилена, а при повышенных температурах — второго. Методом отравления показано, что только 0,5% поверхности СаО является активной и в гидрировании [312]. [c.119]

    Происходит С одинаковой скоростью, кроме того, обмен протонами между диметилсульфоксидом и его сопряженным основанием характеризуется константой скорости 7 л/(моль-с), что почти в миллион раз больше константы скорости обмена протонами между флуорениллитием и флуореном в эфире [10 л/(моль-с)]. Эти результаты свидетельствуют о том, что изменение гибридизации оказывает существенное влияние па скорость переноса протона. Если реакция с изменением гибридизации (например, карбокислоты) протекает в растворителе, способном оказывать стабилизирующее действие на анион, то изменение структуры растворителя будет вносить существенный вклад в величину энергии активации этой реакции. Если изменение гибридизации не играет важной роли, как, например, в диметилсульфоксиде, который обладает более сильными электронодонорными свойствами по сравнению с простыми эфирами, то структурные перестройки в растворителе не являются непременным условием ионизации. В этом случае константа скорости переноса протона будет высокой и менее подверженной влиянию структурных факторов. [c.37]

    Выделяющаяся теплота (92,1 кДж/моль) примерно равна теплоте полимеризации этилена. Реакция роста олигомерной цепи происходит за счет ступенчатого присоединения молекулы этилена к триэтилалюминию. Растущая молекула алюминийорганического соединения может подвергаться термодеструкции или спонтанному обрыву цепи с последующим присоединением этилена. Протекает также и обменная реакция. При равновесных условиях менее замещенный олефин, например этилен, вытесняет более замещенный, например изобутен, из молекулы триизобутилалюминия. Энергия активации реакций роста и обрыва цепи (суммарная) равна 88кДж/моль, а реакции вытеснения — 136 кДж/моль. Поэтому при температурах более 120-130 С наблюдается опережающий рост скорости реакции вытеснения. [c.913]

    Энергии активации и предэкспоненциальные множители коэффициентов скоростей реакций. Расчет предэкспоненциальных множителей коэффициентов скоростей элементарных стадий может быть произведен с помогцью выражений статистической механики для функций состояний (см. гл. 1), при выборе определенной модели активированного комплекса и справочных величин для масс частиц, моментов инерции и частот колебаний исходных вегцеств. Величины энергий активации могут быть вычислены с помогцью квантовой механики при известных потенциальных поверхностях и определенном предположении об определенном соотногцении между кулоновским и обменным взаимодействием [20]. К сожалению этот метод представляет ценность, главным образом, для оценки правильности подхода, но не как практический путь для решения кинетических задач. Причина состоит в том, что квантово-механические расчеты все егце являются слишком грубыми для более или менее точного учета химического взаимодействия, особенно в сложных системах. Поэтому в настоягцее время используется полуэмпирические методы, не связанные с применением квантовой механики. В задачах, связанных с исследованием аэродинамического нагрева, используются имеюгциеся теоретические данные для некоторых из указанных характеристик поверхности, а другие параметры определяются с помош,ью сравнения расчетов с результатами специально проведенных экспериментов. [c.62]

    Если число песпаренных валентных -электронов у атома катализатора больше, чем это необходимо для хемосорбции реагентов, возникает относительно прочная связь реагирующих атомов с катализатором [8—10], что препятствует десорбции продуктов реакции. Такое упрочение связи вызвано, вероятно, дополнительными обменными силами, проявляющимися при обмене электрона, участвующего в связи с адсорбированным атомом, с неспаренным электроном, оставшимся на атомной -орбите атома катализатора. По этой причине, например, железо менее активно в реакции гидрирования, чем никель, причем уменьшение скорости реакции обусловлено только различием в предъэкспоненциальных множителях при равенстве энергий активации [6, 15, 31] (теплоты хемосорбции водорода на железе и никеле равны — см. ниже). В ходе реакции число атомов Ре(4), имеющих два неспаренных -электрона и определяющих в основном каталитическую активность, значительно уменьшается в результате перехода Б е( 4) —> Ре (В) атомы Ре (В), имеющие три неспаренных электрона, захватываются адсорбированными молекулами, а отношение Ре(.4)  [c.176]

    Особенности, установленные нри помощи метода молекулярных пучков для реакций атомов щелочных металлов с молекулами Х , НХ и ВХ (X — атом галогена, R — органический радикал), в известной мере, очевидно, относятся и к бимолекулярным обменным реакциям других частиц. Как и в случае реакций атомов, щелочных металлов, здесь также встают вопросы об угловом распределении продуктов реакции и их энергии, о зависимости сечения или константы скорости от формы и распределения энергии реагирующих частиц, о продолжительности жизни промежуточного комплекса. Первый из этих вопросов в настоящее время удалось решить при помощи метода молекулярных пучков Лишь в ограниченном числе реакций (реакции атомов галогенов с молекулами галогенов, атомов Н с галогенами и галогеповодородами и D -f Hj = HD + Н). См. работу [213]. В отношении изучения распределения энергии в продуктах реакции большие возможности содержатся также в методе импульсного фотолиза [1163] и в методе, разработанном Дж. Полани с сотр. [628], заключающихся в исследовании спектров поглощения или испускания молекулярных продуктов обменных реакций атома с молекулой, например, реакций О -f NO2 = 02 + N0 или Н + I2 = НС1 С1. Это позволяет найти распределение внутренней (колебательной) энергии в продуктах реакции (сводку экспериментальных данных см. в [613]). Были также определены вероятности процессов типа Н -j- lj = H l (v) -f- l, F -f Hg = HF (v) - -+ H и некоторых других для различных значений колебательного квантового числа v (см. 411, 1364]). Так, например, относительные значения констант скорости реакции F Hj = HF + Н оказываются равными [c.281]

    Иманака и сотр. [222] исследовали способность к дейтерообмену гидроксильных групп у декатионированных цеолитов X и Y и у образца СаНХ, которые предварительно обрабатывали в вакууме при 300, 400 и 350° С соответственно. Дейтерообмен проводили при 260—300, 280—300 и 300—330° С, а спектры регистрировали при комнатной температуре. Длительность обмена составляла 7 ч. Как оказалось, у декатионированного цеолита гидроксильные группы с частотой колебаний 3660 см обмениваются быстрее, чем группы с частотой колебаний 3560 с , которые в свою очередь вступают в обмен с большими скоростями, чем гидроксильные группы с частотой колебаний 3745 см . Относительные скорости обмена гидроксильных групп СаНХ зависят от давления. При давлениях до 15 мм рт. ст. скорость обмена уменьшается в ряду 3560>3660>3595 см , а при давлениях выше 20 мм рт. ст.— в ряду 3595>3660 >3560 см . Скорость реакции дейтерообмена удовлетворительно описывается уравнением типа уравнения Ленгмюра. Величина энергии активации обмена для гидроксильных групп с частотой колебаний 3660 см меняется от 7,7 ккал/моль для декатионированного цеолита X до 41 ккал/моль для декатионированного цеолита Y. Адсорбция небольших количеств воды и двуокиси углерода заметно увеличивает скорость обмена. При добавлении воды скорость обмена возрастает на два порядка. Очевидно, в присутствии небольших количеств воды реакция ускоряется в результате обмена протоном молекулы НгО и атомом дейтерия в молекуле Dj. При более высоком содержании воды молекулы ее экранируют электростатическое поле катионов и препятствуют активации молекул дейтерия, [c.341]

    В работе Е. Н. Звягинцевой сделана попытка оценить, насколько отличаются скорости обмена водорода в одних и тех же веществах (ипдене, ацетофеноне и метилнафтилкетоне) с амфотерным и иротофильным растворителем (дейтороалкоголем и дейтероаммиаком) и как сказывается катализ в обоих растворителях (табл. 2). Обмен водорода со спиртом даже при 120—150° происходит медленнее, чем с аммиаком при 0°. Зная приближенно энергию активации изотопного обмена в аммиачном растворе (для индена 12 ккал, для ацетофенона 10 ккал), находим, что нри одинаковой температуре константы скорости реакций в обоих растворителях различаются на 4—6 порядков. Таково следствие большей протофиль-ности аммиака по сравнению со спиртом. [c.221]

    В случае обмена электрона между ионами с фиксированными координационными сферами, например Ре(СН)в и Ре(СЫ)б" или МпОГ и МПО4 , применение принципа Франка—Кондона, по-видимому, накладывает гораздо меньшие ограничения на скорость реакции. Это связано с тем, что геометрическое строение ионов в этих случаях, видимо, настолько подобно в обоих валентных состояниях, что амплитуда нулевых колебаний достаточно велика, и поэтому имеется значительная возможность пространственной ориентации в основном состоянии. Кроме того, как видно из уравнения (4.90), ионы больших размеров характеризуются достаточно малыми энергиями гидратации, так что барьер, связанный с гидратацией ионов, не будет серьезным препятствием для переноса электрона. Исходя из этого, Либби сформулировал принцип, что обмен электрона можно ускорить таким процессом между обменивающимися ионами, который ведет к образованию симметричных комплексов при условии, что геометрическое строение этих комплексов идентично в пределах амплитуд нулевых колебаний. Этот принцип симметрии, по-видимому, объясняет быстрый электронный обмен между такими ионами, как манганат и перманганат или Fe( N) и Ре(СН) . [c.117]

    Вопросу о роли водородных связей в реакциях протонного обмена типа АН + ВН АН + ВН посвящена обзорная статья С. Ф. Бурейко, Е. В. Рыльцева и А. К. Шурубура. Авторы под-робно рассмотрели влияние водородных связей на скорость реакции и ее механизмы. Совокупность экспериментальных данных согласуется с предположением, что обмен протонами происходит в циклическом комплексе, образованном двумя водородными связями. Такая модель призвана объяснить большую скорость реакции и низкую энергию активации. Следует, однако, отметить, что кинетика этих процессов в целом исследована еще недостаточно. Например, оказалось, что константа скорости протонного обмена между НС1 и НВг в результате тщательной очистки системы сильно понизилась, что свидетельствует о наличии неконтролируемых примесей, катализирующих процесс. [c.9]


Смотреть страницы где упоминается термин Энергией обмен и скорость реакций: [c.78]    [c.65]    [c.78]    [c.255]    [c.397]    [c.99]    [c.37]    [c.139]    [c.83]   
Быстрые реакции в растворах (1966) -- [ c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции обмена

Реакции обменные

Реакции энергия реакций

Энергией обмен

Энергия обменная



© 2025 chem21.info Реклама на сайте