Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача конвективна

    Процесс протекает в кинетической области в том случае, когда скорость массопередачи при м симальной движущей силе много больше скорости химической реакции и скорости конвективного переноса экстрактива из зоны реакции. Движущая сила максимальна, когда концентрация экстрактива в сплошной фазе равна нулю. В этом случае количество экстрактива, поступающего в колонну в единицу времени в элементе высоты колонны /г [c.293]


    Подобные же уравнения можно написать для скорости массопередачи каждого реагента. В слое насадки существенен перенос вещества как путем молекулярной, так и конвективной диффузии. Действительный коэффициент диффузии, который учитывает оба фактора, может быть определен посредством модифицированного закона Фика  [c.243]

    Установлено, что скорость массопередачи определяется соотношением конвективного массообмена и молекулярной диффузии. Зависимость от О экспериментально подтверждена рядом исследователей [13—21 и др.]. Однако эти работы подтверждают одновременно и зависимость скорости массопередачи от наличия конвективного переноса. Различие гидродинамической обстановки обусловливает и различный вклад молекулярной и конвективной диффузии в процессы переноса в сплошной и дисперсной фазах. Более того, по данным некоторых исследователей [22, 23], на иоверхности капли могут существовать несколько зон с различным механизмом массопередачи, хотя на практике обычно определяется величина коэффициента массопередачи, усредненная по всей поверхности капли [c.197]

    Полученное распределение скоростей используется для решения уравнения конвективной диффузии, и определяются локальные коэффициенты массопередачи в виде функции сферических координат. [c.198]

    Простейшей моделью массопередачи в сферической капле является модель твердого шарика , которая предполагает полное отсутствие конвективного переноса внутри капли. Уравнение нестационарной Диффузии в сферу имеет вид  [c.199]

    Сравнивая модель Ньюмена с моделью Кронига — Бринка, можно отметить качественный переход механизма массопередачи от чисто диффузионного, характерного для случая, когда циркуляция в капле заторможена, к смешанному, когда перенос вдоль линий тока происходит чисто конвективно, а перенос в направлении ортогональном линиям тока — путем молекулярной диффузии. [c.205]

    Дальнейшее увеличение размера капли и ее скорости приводит к возрастанию инерционных сил при движении жидкости вдоль линии тока. Следствием этого является искривление линий тока Адамара — Рыбчинского и возникновение конвективного переноса массы между линиями тока. Форма капли при этом отклоняется от сферической, и в ряде случаев капля начинает осциллировать, что еще увеличивает роль конвективного переноса в общем балансе массопередачи в капле. Прп (X 1 и Др с 0,2 г/см эти явления начинают проявляться при Ке >250- 300. [c.205]


    Данквертс [24] использовал для описания массопередачи, осложненной химической реакцией, пенетрационную теорию Хигби [25]. Данквертс рассмотрел случай очень малых времен контакта фаз, в течение которых процесс массопередачи является существенно нестационарным, а конвективный перенос вещества в реакционной фазе не играет заметной роли. В рамках сделанных допущений Данквертс получил выражение для Р , р) описывающее ускорение [c.231]

    Кинетическое уравнение для гетерогенного процесса описывает его суммарную скорость. Это заставляет нас выяснить, как включать скорости процессов переноса для отдельных стадий в общее выраже--ние скорости. Проблема нахождения скорости сложных процессов встречается при исследовании теплопередачи путем теплопроводности через слои различных материалов, конвективной тепло- и массопередачи от одной жидкости к другой через неподвижные пограничные слои, а также при изучении сложных реакций. Однако во всех указанных случаях суммарная скорость характеризуется скоростями процессов одного типа. [c.324]

    Удаление влаги из материала при сушке согласно основным положениям массопередачи осуществляется следующим образом. Влага из толщи влажного материала перемещается к поверхности раздела фаз за счет массопроводности. От поверхности раздела фаз влага передается в ядро газового потока за счет конвективной диффузии. Как было показано А. В. Лыковым, процесс массопроводности во влажном теле подчиняется следующему закону [c.421]

    Если одна из фаз — твердое вещество, процесс массопередачи будет протекать по схеме, представленной на рис. 1. 10 (рассматривается случай перехода вещества из твердой фазы в жидкую или газообразную) концентрация внутри твердого вещества уменьшается по направлению к поверхности раздела фаз, причем движение передаваемого вещества происходит по законам так называемой массопроводности у поверхности твердой фазы имеется пограничная пленка жидкости или газа (только одна), внутри которой происходит молекулярная диффузия на внешней границе пленки концентрация выравнивается с концентрацией в ядре потока жидкости или газа за счет конвективной и молекулярной диффузии. [c.37]

    В реальных условиях внешняя массопередача является сложным процессом, определяющимся, с одной стороны, молекулярной диффузией, а с другой — непосредственной передачей вещества благодаря наличию скорости потока. Такой процесс суммарного подвода вещества называется конвективной диффузией. Для количественного расчета этого процесса необходимо знать закон, по которому меняется скорость потока в зависимости от расстояния от обтекаемого тела. Решение задачи о диффузии из потока требует учета как законов, описывающих течение жидкости (для случая вязкой жидкости — уравнений Навье-Стокса), так и законов диффузии. [c.366]

    При температурах сталеплавильного производства (1500—1600° С) константы скоростей химических реакций значительно превышают соответствующие величины, характеризующие массопередачу. Поэтому естественно допустить, что суммарная скорость процессов рафинирования определяется величиной конвективной диффузии во взаимодействующих жидких фазах. Обычно металлический и [c.376]

    В реальных условиях внешняя массопередача в жидкостях и газах является сложным процессом. Она может включать в себя, кроме молекулярной диффузии, перенос вещества благодаря наличию потоков. Такой процесс называется конвективной диффузией. [c.256]

    В проточных системах требующееся для разделения количество адсорбента зависит не только от таких факторов, как количество и состав газового сырья, заданная степень извлечения, адсорбционная мощность и селективность действия поглотителя, определяющиеся природой и способом приготовления адсорбента, температура и давление адсорбции, но и от скорости массопередачи к поверхности и внутрь частиц адсорбента путем молекулярной диффузии, конвективного и турбулентного переноса и степени использования внешней и внутренней поверхностей поглотителя. [c.178]

    Выше, при рассмотрении конвективного теплообмена, тепловой поток, в целях упрош,ения, бы.о выражен через простое уравнение теплоотдачи (закон охлаждения Ньютона), и сложность задачи заключалась в отыскании для каждого частного случая числовых значений коэффициентов теплоотдачи а. Аналогично при рассмотрении массопередачи количество вещества, переносимого из одной фазы системы в другую, мы выразили простым обшим уравнением массообмена таким образом с (ожность решения задачи массообмена осталась для нахождения числовых значений коэффициентов массопередачи Ку и [c.473]


    При интенсивном перемешивании газовой или жидкой фаз массопередача совершается в основном не молекулярной, а турбулентной диффузией, которая возрастает с повышением температуры вследствие усиления конвективных токов. [c.71]

    В. Перемешивание увеличивает коэффициент массопередачи или константу скорости процесса вследствие замены молекулярной диффузии конвективной, т. е. снижения диффузионных сопротивлений, препятствующих взаимодействию компонентов. Следовательно, усиление перемешивания взаимодействующих веществ целесообразно применять для процессов, идущих в диффузионной области до тех пор, пока общая константа скорости процесса к [см. формулы (П.63) — (П.65)] не перестанет зависеть от коэффициентов переноса О, т. е. вплоть до перехода процесса из диффузионной области в кинетическую, где к выражается формулой (П.64). Дальнейшее усиление перемешивания в проточных аппаратах снижает движущую силу процесса и скорость реакции. [c.74]

    С использованием соотношений (10.5) и (10.6) для областей, близкой к поверхности диска и значительно удаленной от нее, получим два уравнения конвективной диффузии. В этих уравнениях вместо Уг введен параметр, определяющий скорость конвективной массопередачи к диску - его угловая скорость ш  [c.400]

    Диффузионный обмен, пли массопередача, является процессом спонтанным (самопроизвольным). В этом сложном физико-химическом процессе различают два принципиально различных механизма переноса вещества 1) диффузию молекулярную и 2) диффузию конвективную. [c.60]

    Турбулизация межфазной границы может быть обусловлена- также возникающими при тепло- или массопередаче локальными изменениями поверхностного натяжения. Учет влияния концентрационных и температурных изменений поверхностного натяжения на гидродинамику вблизи межфазной границы представляет собой весьма сложную и в настоян1ее время еще не решенную задачу (необходимо исследовать устойчивость решения уравнения Навье — Стокса по отношению к малым возмущениям — локальным изменениям скорости). Пока сделаны лишь первые попытки решения этой задачи [72, 73]. В частности, показано [72], что возможность возникновения неустойчивости существенно зависит от знака гиббсовой адсорбции растворенного вещества в состоянии термодинамического равновесия, а также от соотношения между кинематическими вязкостями соприкасающихся фаз и коэффициентами диффузии веществ, которыми обмениваются эти фазы. Объяснено явление стационарной ячеистой картины конвективного движения, вызванного локальными градиентами поверхностного натяжения [73].. Дальнейшие исследования в этой области наталкиваются на серьезные математические трудности. [c.183]

    Как видно из изложенного выше, значительная часть существующих в настоящее время теорий массопередачн (таких как теории проницания и обновления поверхности и их различные модификации) основана на слишком грубых упрощениях и подменяет учет конкретных гидродинамических условий введением не поддающихся расчету и ненаблюдаемых параметров. Перспективной представляется только теория диффузионного пограничного слоя, позволяющая путем физически обоснованных упрощений преодолеть математические трудности, связанные с решением уравнения конвективной диффузии, и разумно родойти к описанию турбулентного режима массопередачи. Несмотря" на [c.183]

    Рассматривается конвективный массо- и теплоперенос при малых и средних значениях Ке для случаев обтекания частиц. Циркуляционное движение жидкости внутри капель играет существенную роль при расчете массопередачи в случае лимитирующего сопротивления дисперсной фазы. Для такого режима наблюдается нестационарный характер процесса массопередачи, что при больших значениях Ре приводит к зависимости критерия Шервуда или Нуссельта от критерия Фурье. Внешний массо- и теплообмен при больших Ре стационарен и описывается уравнениями диффузионного пограничного слоя. При исследовании решений этих уравнений показано, что для расчета величины массового потока достаточно знать распределение вихря по поверхности твердой сферы или касательной составляющей эрости по поверхности капли и газового пузырька. Обсуждены гранр цы применимости погранслойных решений при увеличении отношения вязкостей дисперсной и сплошной фаз. Общий случай соизмеримых фaJ0выx сопротивлений описан обобщенной циркуляционной моделью. Закономерности массо-и теплопереноса при лимитирующих сопротивлениях сплошной и дисперсной фаз и общий случай соизмеримых фазовых сопротивлений рассмотрены в разделах 4.2—4.4.  [c.168]

    Вначале концевые эффекты объясняли интенсивным массооб-меном, вызванным турбулизацией потоков в месте их входа в аппарат. Позднее [206] эти эффекты были объяснены продольным перемешиванием сплошной фазы. Оказалось [204], что экспериментальный профиль концентраций в распылительных колоннах располагается между расчетными профилями концентраций в. режимах идеального перемешивания и идеального вытеснений.. Расчеты показали, что модели идеального перемешивания соответствует наибольший концевой эффект, постепенно убывающий при переходе к поршневому потоку. Таким образом, концевой эффекту входа сплошной фазы в колонну не является следствием большого локального коэффициента массопередачи, а обусловлен конвективными потоками, не учитываемыми моделью идеального вытеснения. В результате из-за снижения движущей силы процесса уменьшается интенсивность межфазного массо- или теплообмена. [c.201]

    Определяя коэффициент массопередачи для потока малой интенсивности, Кузик и Хэппел применили модель, учитывающую свободную поверхность. Кроме того, исследовался конвективный поток массы большой интенсивности в направлении, перпендикулярном поверхности частицы катализатора. В первом случае предполагалось, что частица окружена некоторым слоем вещества, причем на этот слой не влияют другие частицы. [c.85]

    Вычисления Кузика и Хэппела разделяются на два этапа. На первом этапе они принимали, что поток массы через меж-фазную поверхность стремится к нулю, и определяли коэффициент массопередачи feo- На втором этапе рассчитывался поправочный коэффициент, учитывающий изменение толщины пограничного слоя, обусловленное учетом истинной мольной скорости массы на поверхности частицы. Здесь использовали уравнения массо-переноса, исходя из предположения о том, что он происходит путем молекулярной и конвективной диффузии и может быть охарактеризован средним критерием Шервуда [c.87]

    Следует подчеркнуть, что в обш ем случае формулы, полученные для расчета скорости массопередачи, пригодны и для расчета скорости теплопередачи. Естественно, что в этом случае коэффициент молекулярной диффузии должен быть заменен коэффициентом молекулярной температуропроводности. Однако величина последнего намного выше величины коэффициента молекулярной диффузии. Это изменяет соотношение между величиной диффузионных и конвективных потоков и, как следствие, меняет границы применимости физических моделей переноса. Так, чисто диффузионный механизм теплопередачи имеет место в каплях диаметром до 0,1 см. Формула для расчета скорости теплопередачи, аналогичная формуле Ньюмена для массопередачи, была получена Гробером [116]. Формула Кронига [c.221]

    Джонсон, Хамелек и Хотон [46, 47] изучали массопередачу, сопровождающуюся реакцией первого или второго порядка в сплошной фазе, при средних значениях Ке. Для случая газовых пузырей с развитой циркуляцией авторы использовали распределение скоростей по Кавагути [48], а для более высоких значений Ке — профиль скоростей потенциального потока. Система уравнений конвективной диффузии была решена авторами вплоть до значения Ке = = 200. Полученные результаты оказались очень близкими к результатам, которые дает использование пенетрационной теории. [c.233]

    Для систем жидкость—жидкость в последнее время установлено, что массопередача может происходить нетолько путем диффузии, но также и путем спонтанно проходящих перемещений, называемых спонтанной межфазной турбулентностью или спонтанной поверхностной активностью. В случае появления спонтанной турбулентности массопередача между фазами проходит значительно интенсивнее, чем это следует из законов молекулярной диффузии, но в отличие от конвективной диффузии межфазная турбулентность возникает спонтанно без малейшего перемешивания жидкости извне. [c.56]

    Для пнтепсификации процессов в производстве солен применяются все приемы увеличения движущей силы АС и развития поверхности соприкосновения реагентов Р (см. ч. I, гл. И и VI). Для солевой технологии особенно характерны процессы в системе жидкость— твердое вещество (Ж—Т). Развитие поверхности соприкосновения фаз в системе Ж—Т достигается чаще всего измельчением твердого материала и перемешиванием взвеси измельченного твердого материала в жидкости при помощи механических или пневматических мешалок. Перемешивание одновременно способствует интенсификации процесса за счет турбулизации системы и замены молекулярной диффузии конвективным переносом молекул. Для увеличения движущей силы массопередачи особенно широко применяются различные приемы повышения начальной концентрации твердых, жидких и газообразных реагирующих ве- [c.141]

    Модели процессов массопереноса. Механизм массоотдачи характеризуется сочетанием молекулярного и конвективного переноса. Еще более сложным является процесс массопередачи, включающий в качестве составляющих процессы массоотдачи по обе стороны границы раздела фаз. В связи с этим предложен ряд теоретических моделей, представляюихих собой в той или иной степени упрощенные схемы механизма массопереноса. [c.396]

    Эти коэффициенты массопередачи можно найти только опытным путем. Наиболее целесообразным в данном случае, так же как и при конвективном теплообмене, будет метод обобш,ения экспериментальных данных на основе теории подобия. [c.473]

    Обш,ность дифференциальных уравнений конвективного теплообмена и массопередачи позволяет считать, что основные критерии подобия диффузионных процессов должны иметь одинаковый вид с критериями подобия тепловых процессов. В этом нетрудно убедиться, если рассматривать условия перехода на границе раздела фаз массы компонента, распределяемого между фазами, и вывести из этпх условий критерии диффузионного подобия. [c.473]

    Принцип аддитивности фазовых сопротивлений нельзя надежно использовать до гех пор, пока надлежащим образом не определены все сопротивления. Если на границе раздела фаз имеется ПАВ, то необходимо учитывать диффузионное сопротивление пов-сти раздела. Кроме того, наличие ПАВ меняет гидродинамич. структуру потока вблизи границы раздела, что отражается на величине или Р ,, либо обоих коэф. одновременно. Даже когда пов-сть чистая, под воздействием массопередачи может возникнуть поверхностная конвекция, к-рая значительно повышает преим. р , но может отразиться и на Р ,. Конвективные потоки на пов-сти в виде регулярных структур появляются вследствие возникновения локальных градиентов поверхностного натяжения (эффект Марангоии), из-за естеств. конвекции вследствие разности в плотностях у границы раздела и в ядре фазы н по ряду др. причин. [c.657]

    Поверхиостиое иатяжеиие не влияет на коэффициент массоотдачи Рж в условиях ламинарного течения жидкости. При турбулентном течении р обратно пропорционален поверхностному натяжению в степени около Vз [21]. 11ри добавлении поверхностноактивных веществ могут наблюдаться локальные изменения поверхностного натяжения и, как следствие, поверхностная конвекция и увеличение скорости массопередачи. Изменение величины а в направлении движения жидкости также способствует образованию конвективных токов вблизи поверхности [22]. В ряде случаев, наоборот, при добавлении ПАВ изменяется структура поверхностного слоя таким образом, что коэффициент массоотдачи р уменьшается. [c.55]

    Одной из причин возникновения конвективных токов являются продольные градиенты поверхностного натяжения, а также градиенты плотности, появляющиеся при протекании хемосорбции. Явление поверхностной конвекции было обнаружено (20, 22, 37—39] при поглощении СОа водными растворами МЭА, ДЭА и др. Поверхностная конвекция наблюдается в пленочных и насадочных аппаратах [20], в ламинарных струях жидкости [42] в барботажных аппаратах ее влияние на массопередачу сравнительно невелико. Из сказанного выше следует, что коэффициент физической массоотдачи Рж должен быть определен при протекании хемосорбционного процесса, т. е. в идентичных гидродинамических условиях. Если объектом исследования является поглощение СО2 хемосорбентом, то величину р удобно определять по методу [36, 37], заключающемуся в десорбции N30 из раствора хемосорбеита. Поскольку коэффициенты диффузии N20 и СОз близки, то близки между собой и [c.68]

    Но но считать, что кольцевой зазор по периферии тарелок работает так же,как остальные щели (отверстия) тарелки. За счет зазора величина свободного сечения тарелки увеличивается, что при G = L = onst ведет к изменению гидравлического сопротивления и высоты светлого слоя жидкости на тарелке. Если при этом конвективная массопередача от пузырьков не изменяется, то изменение эффективности барботажных тарелок при увеличении зазора связано только о высотой светлого слоя жидкости на тарелке. [c.10]

    Значения функций распределения к и ф для диффузионной модели могут быть получены решением дифференциальных уравнений переноса вещества с конвективным членом (эти уравнения аналогичны изучаемым в курсе теплопередачи и массопередачи уравнениям теплопроводности и диффузии). В случае однонаправленного переноса вещества, как это следует из (1.22) в отсутствие Источников и Стоков, [c.637]


Смотреть страницы где упоминается термин Массопередача конвективна: [c.529]    [c.529]    [c.128]    [c.212]    [c.287]    [c.51]    [c.76]    [c.146]    [c.262]    [c.480]   
Теоретические основы электрохимического анализа (1974) -- [ c.51 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Конвективные ячейки при массопередаче ПАВ

Коэффициенты конвективной массопередачи

Массопередача

Массопередача массопередачи

Некоторые уравнения для расчета конвективной массопередачи



© 2024 chem21.info Реклама на сайте