Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность газов жидкостей

    Некоторые жидкие углеводороды (нефть, мазуты и растворимые в воде жидкости) практически не накапливают электростатических зарядов, так как обладают высокой электропроводностью. Все другие нефтепродукты и сжиженные углеводородные газы обладают высоким электрическим сопротивлением и в определенных условиях накапливают значительный заряд. Особенно большое влияние на электризуемость жидких углеводородов оказывает влажность воздуха, изменение которой может резко исказить данные об оценке склонности их к электризации (табл. 8). [c.150]


    Том III (1964 г.) включает данные по гомогенному химическому равновесию в газовой и жидкой фазах гетерогенному химическому равновесию (твердое тело — жидкость газ — жидкость твердое тело — газ жидкость — жидкость криоскопиче-ские и эбулиоскопические константы) свойствам гомогенных жидких растворов (плотность, коэффициенты активности, энергетические свойства, теплопроводность, электропроводность и числа переноса, вязкость, поверхностное натяжение, показатели преломления) электродным процессам в растворах и расплавах химической кинетике и диффузии. Том заканчивается предметным указателем.  [c.23]

    Прямую кондуктометрию применяют для определения содержания солей в физиологических жидкостях - сыворотке крови, слюне, желчи, желудочном соке, для контроля качества вш1, соков, напитков и т.п. Она используется для характеристики чистоты органических растворителей (ацетон, дихлорэтан и др.). Изменение удельной электропроводности, зависящей от содержания примесей, воды, длительности хранения, позволяет оценить также качество растворителей, влажность газов, текстильных материалов, бумаги, зерна и т.д. [c.157]

    Электропроводностью называется способность веществ (металлов, газов, жидкостей и др.) проводить электрический ток под действием внешнего источника электрического поля. [c.17]

    Электрокинетические явления широко используются не только при научных исследованиях, но и в технике. В частности, электро- форез применяют для нанесения тонкого слоя частиц коллоидных размеров на поверхность проводящего материала. Этим способом лолучают весьма однородные покрытия, толщину которых легко регулировать. Электроотложение можно проводить в таких средах, как спирт, ацетон и других, что исключает выделение газов на электродах дал<е при большой силе тока и малой электропроводности жидкости. Для нанесения токопроводящих покрытий электрофорез используют при производстве изолированных нагревательных спиралей и активированных катодов для радиоламп, представляющих собой металлическую проволоку, покрытую тонким слоем окисла щелочноземельного металла. [c.218]

    Анизотропия — это неодинаковость физических свойств кристалла в разных направлениях. Такие свойства, как механическая прочность, теплопроводность, электропроводность, показатель преломления, измеренные у кристаллов по разным осям, могут быть различными. У аморфных же тел (так же, как и у жидкостей и газов) анизотропии нет. [c.29]


    Равновесие газ — жидкость Равновесие твердое — газ Равновесие жидкость — жидкость Криоскопические и эбуллиоскопические константы Свойства гомогенных жидких растворов Плотность растворов Коэффициенты активности Энергетические свойства растворов Теплопроводность растворов Электропроводность растворов и числа переноса Вязкость растворов Поверхностное натяжение растворов Показатели преломления растворов Электродные процессы [c.14]

    Кроме перечисленных свойств, изучаются также вязкость, теплоемкость, поверхностная энергия на границе раздела фаз газ —жидкость, давление паров растворителя, диэлектрическая проницаемость и т. д. [55]. Методы измерения применяются те же, что и для стабильных растворов, как это видно на примере электропроводности, показателя преломления и плотности, поэтому детальное их рассмотрение не является необходимым. Главное, что отличает исследование свойств пересыщенных растворов от ненасыщенных, заключается в необходимости учитывать особенности нестабильных систем. [c.29]

    Поверхностное натяжение растворов как функцию их состава измеряли методом максимального давления пузырька по известной методике. Электропроводность дисперсионной среды определяли, используя мост переменного тока погрешность, не превышала 10%. Измерение электрокинетического потенциала для границ жидкость—газ и стекло—жидкость выполняли методом микроэлектрофореза в плоскопараллельной кювете. Предварительно исследуемое стекло измельчали в шаровой мельнице с металлическими шарами в течение нескольких часов. Образующуюся дисперсную систему многократно отмывали на фильтре [c.201]

    Производят периодический отбор проб газов, жидкостей, эмульсий, суспензий, твердых тел из аппаратов. Пробы эти затем подвергают в лаборатории цеха количественному химическому анализу для определения концентраций реагирующих веществ или продуктов реакции. Нередко это осуществляется косвенным путем — измерением физических величин, связанных определенным соотношением с концентрацией, — плотности (ареометр, пикнометр, весы Мора — Вестфаля), коэффициента преломления (рефрактометр), удельного вращения плоскости поляризации (поляриметр), электропроводности и т. д. [c.339]

    В самом деле, когда мы рассматриваем какое-нибудь свойство газа или жидкости, у нас обычно не возникает необходимости определить, в каком направлении было или должно быть измерено это свойство. Теплопроводность или показатель преломления воды одинаковы во всех направлениях. Но в кристаллах многие свойства оказываются различными при измерении их в разных направлениях. К таким свойствам относятся, в частности, показатель преломления, теплопроводность, электропроводность, механическая прочность, скорость роста кристаллов, скорость растворения их и др. Известно, что слюда, например, легко разделяется на пластинки по плоскостям, параллельным ее основной поверхности, но разделение ее на части в направлениях, перпендикулярных или наклонных к этой поверхности, требует затраты значительно больших усилий. [c.123]

    Молекулы многих пенообразователей несут электрический заряд и при их концентрировании на стенках пузырей образуются электростатические силы отталкивания, которые стремятся отделить друг от друга стенки смежных пузырей. Это подтверждается высокой удельной электропроводностью тонких мыльных пленок и миграцией через них жидкости под воздействием электрического тока. Пенообразователь, концентрируясь на стенках пузырьков, препятствует утечке газа из последних и повышает стойкость сте- [c.24]

    Жидкости, имеющие низкую электропроводность, могут подвергаться электризации. На границе раздела жидкой и твердой фаз образуется двойной электрический слой (рис. 13.1). При движении жидкостей двойной слой частично разрушается, и в жидкости накапливается избыточное количество ионов одного знака. Присутствие в потоке нефтепродуктов воздуха или других нерастворимых газов, наличие небольшого количества воды, особенно в мелкодисперсном состоянии, а также твердых коллоидных частиц значительно усиливают электризацию. [c.168]

    Особенностью электромагнитной объемной силы является то, что в отличие от других объемных спл (силы тяжести, инерционных сил) ею можно управлять, воздействуя на вызывающие ее. электрическое и магнитное поля. Изменяя величину электромагнитной силы, можно влиять на интенсивность п форму ударных волн, увеличивать критическое значенпе числа Рейнольдса при переходе ламинарного режима течения в турбулентный, замедлять или ускорять ноток электропроводной жидкости (или газа), вызвать деформацию профиля скорости и отрыв пограничного слоя. [c.178]

    При математическом описании работы газового электрода приходится прибегать к различным моделям пористого тела, в основу которых положены такие структурные единицы, как частицы твердого тела (модель уложенных сфер) или поры (различные капиллярные модели). При макроскопическом описании пористой среды иногда удобно рассматривать ее как гомогенную с некоторыми эффективными значениями различных параметров (эффективным коэффициентом диффузии, эффективной электропроводностью и т. д.). Для правильного описания процессов в пористой среде большое значение имеет теория капиллярного равновесия, которая позволяет оценить степень заполнения среды газом при данном перепаде давления и ответить на вопрос, является ли заполнение среды газом и жидкостью равномерным или же изменяется по толщине электрода. При определенных допущениях [c.226]


    При математическом описании работы газового электрода приходится прибегать к различным моделям пористого тела, в основу которых положены такие структурные единицы, как частицы твердого тела (модель уложенных сфер) или поры (различные капиллярные модели). При микроскопическом описании пористой среды иногда удобно рассматривать ее как гомогенную с некоторыми эффективными значениями различных параметров (эффективным коэффициентом диффузии, эффективной электропроводностью и т. д.). Для правильного описания процессов в пористой среде большое значение имеет теория капиллярного равновесия, которая позволяет оценить степень заполнения среды газом при данном перепаде давления и ответить на вопрос, является ли заполнение среды газом и жидкостью равномерным или же изменяется по толщине электрода. При определенных допущениях о форме частиц или пор можно установить распределение пор по размерам и рассчитать суммарный периметр пор, освобожденных от электролита под действием перепада давления между газом и электролитом в гидрофильных электродах или в результате введения гидрофобизатора в гидрофобизированных электродах. [c.241]

    Наличие разнообразных дефектов кристаллического строения приводит к изменению многих свойств твердых тел по сравнению со свойствами идеальных кристаллов. Так, точечные дефекты приводят к изменению электропроводности и цвета кристаллов. Присутствие дислокаций облегчает разрушение твердых тел. Выходы всех дефектов на поверхность твердых тел увеличивают их способность притягивать молекулы газов и жидкостей из окружающей среды, т. е. усиливают процессы адсорбции. [c.168]

    Гелий (атомный вес 4,0026) — газ, обладающий весьма низкой плотностью, малой растворимостью в воде и других жидкостях, высокой теплопроводностью и электропроводностью, весьма низкой критической температурой (—267,97" С) и температурой кипения ( кип= —268,94° С при ТаО мм рт. ст.) он также химически инертен. Эти свойства обусловили применение его в весьма важных областях техники при сварке ряда металлов, в металлургии при получении некоторых чистых металлов, в криогенной технике для получения весьма низких телшератур, для получения искусственных атмосфер при кессонных и водолазных работах, в медицине. [c.178]

    Угольно-керамические материалы служат основным конструкционным материалом главным образом для электротехнических, огнеупорных, химически стойких и антифрикционных изделий. Для всех материалов этой группы характерна большая пикнометрическая пористость (обычно 20—25%). Этим обусловлены их технически важные свойства — проницаемость для жидкостей и газов, большая стойкость при колебаниях температуры кроме того, их прочность, электропроводность, теплопроводность и другие свойства. [c.72]

    Один из типов интегральных детекторов работает на основе измерения электропроводности растворов [30]. Газы, выходящие из хроматографической колонки, адсорбируют подходящей жидкостью, после чего измеряют изменение электропроводности раствора, которое пропорционально концентрации содержащегося в нем вещества. [c.501]

    При сопоставлении свойств микросоставляющих материи (атомов, молекул, ионов) и свойств макроскопических объектов (газов, жидкостей, твердых тел) заметны существенные различия. Они зависят от пространственного расположения и взаимодействия микросоставляющих между собой. Многие свойства вещества, такие, как температура плавления, давление пара, плотность, электропроводность и др., обусловлены свойствами системы в целом, а для микросоставляющих не имеют смысла. Поэтому следует четко различать свойства микро-и макрообъектов. [c.344]

    При любой модели требуется знание некоторых коэффициентов (кратность циркуляции, число ячеек, коэффициент продольного перемешивания и др.), зависящих от гидродинамических и конструктивных факторов и определяемых опытным путем. Указанные коэффициенты находят измерением полей скоростей и концентраций в аппарате или же пользуются косвенными методами, основанными на вводе в поток небольшого количества вещества (индикатора), не влияющего заметно на свойства потока и легко определяемого в нем. В качестве индикаторов применяют растворы красителей или солей, радиоактивные вещества и др. В первом случае концентрацию индикатора в потоке определяют фотоколориметрически или измерением электропроводности, во втором— по интенсивности излучения. В двухфазном потоке газ—жидкость коэффициенты находят для каждой из фаз. [c.239]

    Зондовые измерения распределения потенциала по радиусу дуговой камеры и анализ экспериментальных данных [32] по вольт-амиерным характеристикам несамостоятельного разряда показывают, что столб дуп1 окружен относительно холодным электропроводным газом, потенциал которого приблизительно равен потенциалу дуги в данном сечении. В дальнейшем столб дуги и указанный газ для краткости будем называть столбом электропроводного газа. Здесь рассматривается устойчивость столба электропроводного газа в сильном радиальном электрическом поле, выводятся формулы для расчета минимальной скорости вращения среды, необходимой для стабилизации (гидродинамические неустойчивости, не связанные с электрическим полем, не рассматриваются и не учитываются). Эта задача имеет много общего с исследованием неустойчивости поверхности раздела тяжелой электропроводной и рас-ьоложенной над ней более легкой неэлектропроводной жидкостей в сильном электрическом поле плоского электрода [29]. [c.199]

    Для изучения процесса образования индивидуальных пузырьков применяют приборы для получения пены посредством продувания воздуха в сочетании с скоростной фотосъемкой [6]. Кларк и Блэкмен разработали усовершенствованный прибор для получения пены, основанный на том же принципе продувания воздуха, который позволяет измерять удельную поверхность (определяемую как полную поверхость границы раздела газ—жидкость в 1 мл пены, выраженную в см ), скорость истечения и общий объем пены. Удельную поверхность определяют также по оптической плотности или светопроницаемости пены. Измерения электропроводности пен и растворов, из которых они были образованы, позволяют рассчитать величину коэффициента кратности, характеризующего отношение объема пены к объему содержащейся в ней [c.329]

    При высоких температурах порядка нескольких тысяч градусов, а также при очень низких давлениях газы находятся в ионизированном состоянии и поэтому электронроводны, подобно жидким металлам и некоторым другим капельным жидкостям-электролитам сказанное выше о воздействии электрического и магнитного нолей на электропроводную жидкость и об учете этого воздействия относится и к ионизированному газу. [c.177]

    Если под полупроводниками подразумевать вещества, электропроводность которых существенно зависит от воздействия внешних факторов (температура, свет и т. д.), то можно считать, что большинство твердых тел, жидкостей и даже газов обладает свойствами полупроводников. Однако в производстве полупроводниковых приборов используется пока что ограниченное число материалов. Все они являются твердыми телами с электронной электропроводностью и имеют, как правило, кристаллическое строение. Поэтому в дальнейшем под понятием полупроводник будут подразумеваться только твердые тела, обладающие электронной электропроводностью, величина удельной проводимости ко-торых находится в пределах 10 —10  [c.11]

    Итак, в изложенном окисление ЗОг рассматривается как гетерогенная реакция на каталитических поверхностях. Нельзя сказать, что подобные соображения являются исчерпывающими хотя бы потому, что в них газовой среде не отводится никакой роли. В последнее время ряд исследователей заинтересовался вопросом гомогенного окисления ЗОг в газовой фазе. Остановимся вкратце на относящихся сюда опытах. В них исследовали окисление ЗОг в газовом пламени различного происхождения, при отсутствии и наличии ингибиторов и пр. Прямое опреде-ленпе ЗОз производилось методом Флинта (см. стр. 17) точка росы замерялась методом электропроводно сти при помощи специального прибора. Исследовались два типа пламени — обыкновенной горелки Бунзена, при сжигании городского газа, и диффузного пламени СН4, Нг, СО, сжигавшихся в воздухе при помощи кварцевой насадки. Для удобства ввода ингибиторов пламени металлическая трубка горелки Бунзена была заменена кварцевой того же диаметра, снабженной боковым отводом. Через последний и вводились исследуемые реагенты, обычно в виде паровоздушной смеси, получавшейся при пропуске воздуха через летучую жидкость СО, Нг, СН4 брались из баллонов иеподсушенными и без дополнительной очистки, ЗОг смешивался с горючим газом перед горелкой через сифон. Объемы газов измерялись реометрами, заполненными па-рафи ювым масло.м. [c.104]

    Н, в, и нити-армирующие наполнители в конструкц. материалах, имеющих орг., керамич. или металлич. матрицу. Н.в. (кроме борных) используют для получения волокнистых или композиционно-волокнистых (с неорг. или орг. матрицей) высокотемпературных пористых теплоизоляц. материалов их можно длительно эксплуатировать при т-рах до 1000-1500 °С, Из кварцевьк и оксидных Н,в, изготовляют фильтры для агрессивных жидкостей и горячих газов. Электропроводные карбидкремниевые волокна и нити применяют в электротехнике. [c.213]

    Гелий - инертный газ с уникальными свойствами. Плотность гелия ио отношению к воздуху составляет 0,138. Гелий почти не растворим в жидкостях и меньше, чем любой другой газ, склонен к адсорбции хорошо диффундирует через твердые тела и любые узкие щели. Гелий - хороший проводник теплоты, теплопроводность его в б раз выше, чем у воздуха, но несколько ниже, чем у водорода. По электропроводности гелию нет равных среди газов. Он слабо диамагнитен, с низкой скоростью ионизации, является самым прочным атомным п молекулярным веществом. Гелий имеет самую низкую температуру сжижения (0,71 - 4,16 К) и критическую температуру (5,2 К). Поверхностное натяжение жидкого гелия в десятки и сотни раз меньше, чем у других сжиженных газов. Ниже температуры 2,2 К происходит скачкообразное изменение свойств жидкого гелия, при этом ои становится сверхтекучим и обладает сверхтеплопроводиостью. [c.189]

    Бромистый водород — тяжелый бесцветный газ (т. пл. —86°, т. кип. —67°, критическая температура +91,3° и критическое давление около 68 атм). Он дымит на влажном воздухе и хорошо растворяется в воде при 0° 1 объем воды растворяет 600 объемов бромистого водорода. Водный раствор бромистого водорода ведет себя как сильная кислота безводная жидкость имеет очень низкую удельную электропроводность (0,05 XIО ). Ее диэлектрическая постоянная равна 6,29 при —80° и 2,16 при —69°. Скрытая теплота плавления 7,44, скрытая теплота испарения 51,3 кал г. Показатель преломления газообразного бромистого водорода 1,0006149 для X 5461А при 0° и 760 м . [c.151]

    Вальден, Улих и Вернер [1997] очищали хлороформ для проведения электрохимических измерений. Они оставляли хлороформ стоять в течение нескольких недель над хлористым кальцием, затем перегоняли его и сушили несколько раз над сульфатом натрия или карбонатом калия, перегоняя после каждой осушки. Авторы рекомендуют проводить перегонку, медленно пропуская через жидкость не содержащий углекислого газа воздух. Вальден [1984] измерял электропроводность хлороформа, предварительно промытого водой, осушенного кальцинированной содой или пятиокисью фосфора и подвергнутого фракционированной перегонке над кальцинированной содой. [c.391]


Смотреть страницы где упоминается термин Электропроводность газов жидкостей: [c.478]    [c.301]    [c.130]    [c.130]    [c.59]    [c.56]    [c.33]    [c.8]    [c.176]    [c.108]    [c.244]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости



© 2025 chem21.info Реклама на сайте