Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цистин обмен

    Эта окислительно-восстановительная реакция играет большую роль в обмене веществ в частности, в зависимости от течения этой реакции в том или ином направлении может наблюдаться активирование или ингибирование отдельных ферментных систем. В белках обычно преобладает окисленная форма, т. е. цистин. [c.194]

    Цистин и цистеин — тесно связаны между собой в обмене. Мы видели, что при их окислении возникает цистеиновая кис- [c.252]


    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]

    Выяснено, что при недостаточности холина в организме наблюдается ряд серьезных нарушений в обмене — жировая дегенерация печени и кровоизлияния в почках. Эти явления, как оказалось, обусловлены недостатком лабильных метильных групп в организме и могут быть устранены дачей либо холина, либо метионина. Метионин может полностью заменить цистеин (цистин) в питании. Это объясняется тем, что цистеин и цистин [c.347]

    Основная масса азота большинства аминокислот проходит в реакциях обмена через стадии превращений в глютаминовую и аспарагиновую кислоты или а-аланин. Содержание этих трех аминокислот в белках достигает 25—30%. Кроме того, в процессах обмена в животных тканях указанные аминокислоты возникают из других аминокислот. Так, глютаминовая кислота образуется из пролина, оксипролина, орнитина и, возможно, из гистидина аланин образуется из триптофана, цистина и, вероятно, из серина. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, составляет также около 25—30% белковой молекулы. В результате около 50—60% белковой молекулы составляют аспарагиновая кислота, аланин, глютаминовая кислота и аминокислоты, связанные с ними прямым переходом в обмене. [c.354]


    Цистинурия. Цистинурия представляет собой нарушение в обмене аминокислот, содержащих серу. Цистинурия встречается гораздо чаще, чем описанные выше аномалии аминокислотного обмена. Она проявляется в увеличенном выделении цистина с мочой если нормально с мочой выделяется мало цистина (1—85 мг в сутки), то при цистинурии количество выделяемого цистина резко возрастает (до 400—1000 мг в сутки). Вследствие плохой растворимости цистин выпадает в моче в виде кристаллических или аморфных осадков, из которых в почечных лоханках и мочевыводящих путях образуются цистиновые камни, достигающие иногда большого веса (50 г). Однако отложения цистина наблюдаются не только в почках, но и в других органах (например, в стенке кишечника, печени, селезенке и лимфатических узлах). Это означает, что цистинурия не является нарушением, связанным только с почками. В наиболее тяжелых случаях цистинурии в моче появляются значительные количества других аминокислот (например, лизина, триптофана, лейцина, тирозина) и даже диаминов (путресцина и кадаверина, стр. 319). Все это указывает на глубокое нарушение аминокислотного обмена в целом. [c.372]

    Свободный цистин, введенный per os людям, страдающим цистинурией, пол- ностью окисляется до сульфата и не приводит к увеличению содержания цистина в моче. Этот неожиданный, но многократно подтвержденный факт указывает на то, что цистинурия не связана непосредственно с нарушением обмена самого цистина. В то же время оказалось, что введение цистеина или метионина больным цистинурией приводит к значительному увеличению выделения цистина в моче. Это стоит в явном противоречии с общеизвестными фактами легкой превращаемости цистеина в цистин и обратно и взаимосвязи в обмене цистина, цистеина и метионина (стр. 346). Источниками цистина при цистинурии в основном, вероятно, являются цистеин или метионин. По-видимому, причиной цистинурии является нарушение реабсорбции аминокислот в почках. [c.373]

    Выяснено, что при недостаточности холина в организме наблюдается ряд серьезных нарушений в обмене — жировая дегенерация печени и кровоизлияния в почках. Эти явления, как оказалось, обусловлены недостатком лабильных метильных групп в организме и могут быть устранены дачей либо холина, либо метионина. Метионин может полностью заменить цистеин (цистин) в питании. Это объясняется тем, что цистеин и цистин синтезируются в организме животных, но необходимым условием для их синтеза является наличие метионина в пище. [c.367]

    Установлено строение белкового гормона инсулина, регулирующего сахарный обмен в организме, а также строение рибонуклеазы — катализирующего гидролитическое расщепление рибонуклеиновых кислот (стр. 433) на простые нуклеотидные остатки. Молекула рибонуклеазы, имеет цепь из 124 аминокислотных остатков. Эта цепь сложена определенным образом и удерживается в этом состоянии четырьмя дисульфидными мостиками (за счет содержащей такие мостики аминокислоты цистина). В 1969 г. появилось сообщение о синтезе этого фермента. [c.427]

    Дисульфидный обмен. Основная трудность в синтезе несимметричных пептидов цистина заключается в реакции дисуль-фидного обмена [1906], сущность которой выражается следующим уравнением (106)  [c.306]

    При распаде цистатионина образуется цистеин и й-амино-масляная кислота. Последняя найдена в моче у людей, получавших с пищей большие количества метионина [72]. Цистеин образуется также из пировиноградной кислоты по реакции (з), что было доказано при помощи сульфида, меченного [73]. Цистеин легко дегидрируется, образуя цистин (реакция и) эта реакция обратима, и поэтому можно считать, что цистин и цистеин в межуточном обмене превращаются друг в друга. [c.375]

    Цистеин и цистин. Они содержат в молекуле серу. Обмен ее в организме связан преимущественно с превращениями этих аминокислот. [c.129]

    Цистеин, цистин и метионин — три аминокислоты, содержащие в своих молекулах серу, являются источниками серной кислоты в организме животных. Обмен этих аминокислот имеет некоторые общие черты, особенно это [c.379]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    Цистинурия—довояьно распространенное наследственное заболевание. Метаболический дефект выражается в выделении с мочой в 50 раз больше нормы количества 4 аминокислот цистина, лизина, аргинина и орнитина. Уровень цистина в крови обычно не выше нормальных величин. Люди, страдающие цистинурией, вполне здоровы, за исключением тенденции к образованию в организме камней. Эта врожденная аномалия обмена обусловлена полным блокированием реабсорбции цистина и частичным нарушением всасывания трех других аминокислот в почках нарушений в промежуточном обмене этих аминокислот при этом не выявлено. [c.467]


    Вопрос о природе связей, стабилизирующих пространственные структуры в водных дисперсиях казеина, до сих пор не решен. Это связано с тем, что нет специальных работ, посвященных исследованию контактов, ответственных за структурообразование. В основном исследователи пытались выяснить роль содержащих серу аминокислот в образовании пространственных структур. Так, Вор-мел [275], исследуя специфические группы, участвующие в гелеобразовании в системах казеин — вода — щелочь, пришел к выводу, что стабилизующими гель группами являются группы цис-теина. В работе Хиггинса, Фрэзера и Хейса [276], посвященной выяснению роли сульфгидрильных групп в образовании казеиновых гелей, изучался процесс выделения серы, освобождающейся под действием щелочи. Однако ввиду малого количества цистино-вых остатков в казеине авторы приходят к заключению, что только 3 — 8-связи не могут быть ответственны за структурообразование в концентрированных казеиновых системах. В работе [277] отмечалось, что если структурообразование инициировано ионами Са " , основную роль в образовании структуры играют ЗН-груины казеина. Однако в работе [278] было показано, что в казеине не происходит дисульфидный обмен и, следовательно, нет свободных 8Н-групп. [c.114]

    Аминокислоты являются важнейшими соединениями, которые активно участвуют в обмене веш еств всех живых существ на Земле. В мире налажено промышленное производство аминокислот, объем производства составляет около 1 млн. т в год, что в денежном исчислении составляет около 3 млрд. долларов. В промышленных масштабах микробиологическим и химическим способом получают 30 аминокислот аланин, глицин, лизин, гистидин, цистин, аспарагиновую кислоту, глутаминовую кислоту, триптофан и др. Из незаменимых аминокислот налажено широкое производство Х-лизина, В-и Ь-метионина, Ь-триптофана и Ь-треонина. Кроме этих аминокислот в больших количествах производят 1>-глутаминовую кислоту и глицин. Главным разработчиком новых технологий аминокислот является Япония. На долю глутаминовой кислоты в мировом производстве аминокислот приходится 64%, производство О- и Ь-метио-нина составляет 24%, -лизина - 7%. Все остальные 27 аминокислот составляют примерно 5% от общего объема производства аминокислот в мире. [c.114]

    Токсическое действие. В. имеет важное значение в ферментной регуляции обмена фосфатов в биологических объектах. Действие избыточного количества В. характеризуется нарушением различных метаболических процессов. Подавляется синтез холестерина, нарушается обмен цистина, синтез коэнзима А, триглицеридов и фосфолипидов. Известна этиологическая роль В. в развитии маниакально-депрессивных психозов у людей, а также прямое токсическое воздействие ванадийсодержащей пыли на паренхиму легких. Ингибирование активности моноаминооксидазы связано с нарушением обез-вреживающей и секреторной функций печени. Нарушаются процессы окислительного [c.432]

    БЕЛКОВЫЕ ГИДРОЛИЗАТЫ — нродук ты неполного расщепления белков, получаемые путем кислотного или щелочного гидролиза. Содержат незаменимые аминокислоты, ионы натрия, калия, магния и др. В косметической промышленности используют гидролизаты кератина, желатины, отходов колбасной оболочки, которые различаются между собой составом аминокислот. Так, в гидролизатах кератина несколько больше серосодержащих аминокислот (цистеина, цистина, метионина), и они применяются в основном в средствах для ухода за волосами. Они нормализуют белковый обмен в коже волосистой части головы, который, как правило, нарушен у людей, страдающих преждевременным выпадением волос, усиливают кровоснабжение кожи. Белковые гидролизаты кератина в составе лосьонов для волос способствуют значительному уменьшению салоотделения кожи и поэтому более эффективны при жирной себорее. При сухой себорее более действенными оказываются косметические средства в кремообразной форме. [c.157]

    Производные пиридоксина — фосфопиридоксаль и фосфо-пиридоксамин—(см. стр. 192) являются коферментами ряда ферментов, участвующих в обмене аминокислот (аминотранс-феразы, декарбоксилазы аминокислот, кинуренинаминотране-феразы, цистеиндесульфуразы, фосфорилазы и др.). При недостатке пиридоксина нарушается обмен многих аминокислот, особенно триптофана, метионина, цистина, глютаминовой кислоты и др. Введение пиридоксина оказывает благоприятное действие при нарушении белкового, жирового и углеводного обмена. Суточная потребность в пиридоксине около 2 мг. [c.65]

    Он находится во всех растениях. Цистеин играет большую роль в обмене веществ растений как источник серы, а также в связи с наличием SH-группы как восстанавливающее вещество. Цистеин в растениях очень легко превращается в диаминодитио-карбоновую кислоту — цистин  [c.194]

    L-Цистеин и L-цистин. В составе белков обнаружены 3 серусодержащие аминокислоты цистеин, цистин и метионин, которые оказались определенным образом связанными между собой в обмене. Особенностью этих аминокислот является наличие серы в их молекуле. Можно считать, что обмен серы в организме в основном представляет собой превращение серы, содержащейся в указанных аминокислотах. Цистеин и цистин могут легко превращаться друг в друга, как видно из следующей схемы  [c.346]

    Сера входит в состав почти всех белков тела. Особенно много серы находится в протеиноидах опорных тканей, например в кератине волос, рогах, шерсти и т. д., отличающихся высоким содержанием аминокислоты цистина. Сера встречается также в составе эфиросерных кислот, трипеп-тида глютатиона, витаминов, гормонов (например, в окситоцине) и ряде других органических соединений, играющих большую роль в обмене веществ. [c.391]

    Зервас [2658] предложил принципиально иной метод синтеза несимметричных пептидов цистина. Исходными соединениями в этом методе служат два 5-замещенных производных цистеина, имеющих различные карбоксилзащитиые группировки эти эфиры цистеина ацилируют по аминогруппе таким образом, что образуется производное нитробензилового эфира фосфорной кислоты (116). Удаление 5-защитных групп и последующее окисление приводят к несимметричному производному цистина (117), дисульфидный обмен у которого невозможен, поскольку связь 5—5 участвует в образовании циклической фосфорсодержащей системы. Селективное отщепление той или иной С-за-щитной группы открывает путь к получению несимметричных пептидов. [c.309]

    Рассмотрение обмена аминокислот по биогенетическим семействам [7] показало, что наибольший удельный вес во все изучавшиеся периоды роста и развития яровой вики принадлежит аминокислотам группы аспартата (лизин, метионин, треонин, изолейцин, аспарагиновая и аспарагин), связанным с обменом ок-салоацетата, и глутамата (аргинин, пролин, глутаминовая, глутамин и у-аминомасляная), сопряженным в обмене с а-кетоглута-ратом, т. е. аминокислотам, связанным с циклом ди- и трикар-боновых кислот (см. табл. 3). Содержание этих групп от 28-го до 67-го дней после посева снижается более чем в 3,5—4 раза, что связано с изменением удельного веса азотистых соединений в метаболизме растений по мере роста и развития за счет интенсификации обмена и возрастания удельного веса углеводов [8]. На долю семейств нирувата (аланин, валин, лейцин) и серина (серии, цистеин, цистин, глицин) приходится менее 1/3 общего количества свободных аминокислот. Содержание их в процессе вегетации растений также убывает. [c.91]

    Серусодержащие аминокислотные остатки имеют важное значение в связи с особыми химическими свойствами серы. Высокая поляризуемость атома серы делает серусодержащие группировки особенно эффективными в реакциях нуклеофильного замещения (в качестве как замещаемых, так и замещающих группировок). Тиоловая группа цистеина является отличным нуклеофильным агентом. Даже тиоэфирная группа метионина обладает нуклеофильными свойствами, о чем свидетельствует ее способность к образованию сульфониевых производных типа 8-аденозилметионина. Цистеин легко окисляется в цистин, и эта реакция в белках служит единственным способом образования истинно ковалентной связи между разными полипептидными цепями или между остатками одной цепи. Такие дисульфидные связи при некоторых условиях могут вступать в обменные реакции, в результате которых происходит обмен радикалов, соединенных с атомами серы  [c.23]

    АМИНОКИСЛОТЫ. Производные карбоновых кислот, в которых один или два атома углеводородного радикала замещены аминогруппой NHj. Входят в состав белков, которые являются полимерами А. По числу карбоксильных групп (СООН) различаются moho- и дикарбоновые А., по числу аминных групп различаются MOHO- и диаминовые А. В зависимости от положения аминогрупп различают альфа-, бета- и гамма-кислоты. Получаются синтетически или выделяются из белков. А. занимают центральное место в обмене азотистых соединений в животных, растениях и микроорганизмах, так как служат источником образования белков, гормонов, ферментов и многих других соединений. В настоящее время известно более 90 природных А. В белках содержится лишь около 20 А. Растения и автотрофные микроорганизмы способны синтезировать все входящие в их состав А. Животные могут синтезировать лишь следующие А. аланин, аргинин, аспарагиновую кислоту, глутаминовую кислоту, гистидин, глицин, серин, тирозин, цистеин, цистин и так называемые иминокислоты — пролин и оксишролин. А., которые могут синтезироваться в организме животных, называются заменимыми. Для всех видов животных безусловно незаменимыми являются лизин, метионин, треонин, триптофан, фенилаланин, лейцин, валин, изолейцин. Ряд А. используется в кормлении с.-х. животных. [c.22]

    ЦИСТЕИН. Аминокислота. НЗСНгСНМНзСООН. Синтезируется в организме животных. Нерастворима в воде. Ц. занимает очень важное место в обмене веществ. Сульфгидрильная группа Ц. 8Н обладает способностью легко окисляться, отдавая водород, идущий на восстановительные биологические реакции. При окислении двух молекул Ц. образуется цистин, обладающий способностью легко восстанавливаться до Ц. Таким образом, система цистеин — цистин является окислительно-восстановительной. В природных белках присутствуют как Д., так и цистин. Являясь важным источником серы, Ц. принимает участие в синтезе многих кератинов [c.355]

    Интересное предложение по использованию перегруппировки дисульфидов при анализе белков сделали Глазер и Смит [7]. Чтобы произошел обмен дисульфидных связей, белок оставляют в 9,6 н. растворе НС1 с бисдинптрофенилцистином в течение нескольких дней до тех пор, пока концентрация моно(динитрофенил)-цистина в водном растворе после экстрагирования этилацетатом не дойдет до постоянной величины. У различных белков величины дисульфидного обмена сильно различаются величины, найденные по достижении равновесия реакции, могут быть использованы для правильной оценки содержания цистеиновых и полуцистиновых остатков в белке. [c.94]

    Сера (5) входит в состав аминокислот — цистина и метионина, имеет большое значение в белковом обмене и в окислительно-вос-становительных процессах. Сера положительно влияет на образование хлорофилла, способствует образованию клубеньков на корнях бобовых культур и клубеньковых бактерий, усваивающих атмосферный азот. Сера входит в состав некоторых растительных масел горчичного, чеснокового. Недостаток серы в растениях нарушает процесс обмена веществ и синтез белка, вызывает хлороз, что снижает урожайность и качество растений. Сера поступает в почву из атмосферы и с удобрениями (сульфат аммония, суперфосфат и др.). При явном недостатке серу вносят в почву непосредственно. Соединения серы широко используют при мелиорации солончаков путем их гипсования. [c.11]

    Цистин (Р, Р -днтиоди-а-аминопропионовая кислота) содержится во многих белках. Как и цистеина, ее много в кератинах. Часто в поли-пептидные цепи включаются обе части цистина так, что сульфидный мостик оказывается связующим между разными частями белковой молекулы. Цистин — также заменимая аминокислота и в обмене веществ часто участвует вместе с цистеином, образуя окислительновосстановительную систему, в которой играет роль восстановителя. [c.421]

    Превращение сульфгидрильной группы — ЗН-цистеи-на в дисульфидную —5—5— цистина и наоборот представляет собой окислительно-восстановительный процесс. Легкая обратимость этой реакции имеет важное значение в обменных процессах. [c.129]

    Глюкагон является и эффектором фермента амило-1,6-глю-козидазы кроме того, повышает основной обмен и потребление кислорода. Он представляет собой однолинейный полипептид, состоящий из 29 аминокислот, по структуре отличен от инсулина глюкагон не содержит пролина, изолейцина и цистина, не имеет метионина и триптофана, концевых аминокислот — гистидина и треонина  [c.202]


Смотреть страницы где упоминается термин Цистин обмен: [c.280]    [c.253]    [c.37]    [c.122]    [c.307]    [c.122]    [c.307]    [c.449]    [c.380]   
Биохимия аминокислот (1961) -- [ c.366 , c.387 ]




ПОИСК





Смотрите так же термины и статьи:

Цистин



© 2025 chem21.info Реклама на сайте