Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Матрикс цитоплазмы

    Ионы Са2+ играют важную роль в регуляции многих биохимических реакций, протекающих в клетке. В поддержании низкой по сравнению с внеклеточным пространством концентрации ионизированного Са + в цитоплазме принимают участие митохондрии. Эти внутриклеточные органеллы способны аккумулировать большие количества Са + и вместе с тем им принадлежит решающая роль в обеспечении энергетических потребностей клетки в целом. Накопление Са + в митохондриях существенно влияет на активность многих ферментов, локализованных в матриксе и катализирующих отдельные стадии цикла трикарбоновых кислот, окисления кетокислот с разветвленной цепью, липолиза и др. Ярким примером участия Са + в регуляции собственных метаболических функций митохондрий является торможение окислительного фосфорилирования. [c.476]


    Ядерный сок составляет жидкую или полужидкую часть-ядра. По субмикроскопическому составу он очень сходен с основой-(матриксом) цитоплазмы. При электронной микроскопии в нем также обнаруживаются тончайшие нити и гранулы. [c.29]

    Перенос ацил-КоА через мембрану митохондрий из цитоплазмы в матрикс митохондрий. [c.98]

    В эукариотических клетках относительное содержание (концентрация) рибосом меньше, и их количество очень сильно варьирует в зависимости от белоксинтезирующей активности соответствующей ткани или отдельной клетки. Основная масса рибосом локализована в цитоплазме (рис. 29). В клетках с интенсивной секрецией белка и развитой сетью эндоплазматического ретикулума значительная часть цитоплазматических рибосом прикреплена к его мембране на поверхности, обращенной к цитоплазматическому матриксу в некоторых частях ретикулума их может быть много, в то время [c.50]

    В недавних работах были проведены тщательные определения числа протонов, числа зарядов и числа молекул АТФ, приходящихся на каждый из трех центров сопряжения в ЦПЭ (ср. с. 427). С помощью различных доноров и акцепторов электронов были получены результаты, схематически показанные на рис. 13.9. Каждый центр сопряжения имеет протонный насос, разделяющий 4 заряда (4 протона выходят из цитоплазмы в матрикс)— отношение Н "/центр = 4 во всех трех центрах. При про- [c.435]

    Стадией, лимитирующей синтез АТФ, является высвобождение синтезированного АТФ из активного центра фермента в матрикс. Полагают, что энергозависимое протонирование отдельных функциональных групп АТФ-азного комплекса, происходящее за счет энергии АцН , вызывает конформационные изменения в Р компоненте, которые приводят к быстрому высвобождению синтезированного АТФ из активного центра фермента. Важным моментом является обратимость реакции, катализируемой АТФ-азным комплексом. При соответствующих условиях комплекс Рд—Р может расщеплять молекулу АТФ и использовать полученную при этом энергию для транспорта протонов, т. е. для образования на мембране АцН . Согласно концепции, постулированной В. П. Скулачевым, наряду с АТФ используется как конвертируемая валюта для энергетических превращений, протекающих на мембране. В связи с этим было предложено все энергетические превращения в клетке подразделить на две группы протекающие в цитоплазме (источник энергии — АТФ, креатинфосфат и другие макроэрги) и локализованные в мембране, использующие энергию Д йН (рис. 15.9). Следует отметить, что не уникален в качестве сопрягающего иона и у некоторых видов организмов при определенных условиях его может заменить ион натрия. [c.205]


    Т) Обратите внимание, что цитрат транспортируется в цитоплазму лишь тогда, когда его концентрация в матриксе митохондрии достаточно велика, например при избытке углеводов, когда цикл трикарбоновых кислот обеспечен ацетил-КоА. [c.340]

    Костные клетки, называемые остеобластами, находятся в лакунах, распределенных по всему матриксу. Эти клетки откладывают неорганические компоненты кости. Лакуны соединяются между собой тонкими канальцами, содержащими цитоплазму через эти канальцы проходят кровеносные сосуды, обеспечивающие обмен различными веществами между остеобластами. [c.246]

    Наружная мембрана отделяет внутреннюю часть митохондрий от цитоплазмы клетки. Она содержит различные белки, образующие широкие каналы, по которым легко проникают молекулы веществ с молекулярной массой до 10 ООО дальтон. В ней находятся также ферменты, расщепляющие липиды и способствующие их последующему перемещению в матрикс митохондрий. [c.51]

    Внутреннее пространство клетки занято протоплазмой, которая представляет собой весьма сложную в химическом и морфологическом отношении систему, содержащую огромное количество различных видов структур. Структуры погружены в основное вещество протоплазмы, называемое цитоплазмой или гиалоплазмой (иногда — матриксом). Как протоплазма в целом, так и каждый из содержащихся в ней структурных элементов, окру- [c.21]

    Поскольку, однако, одна из составляющих потенциала определяется удержанием воды поверхностными силами, создаваемыми цитоплазматическим матриксом, следует ожидать, что осмотическое давление относительно свободной воды в цитоплазме будет ниже, чем давление нормального (т. е. представляющего собой истинный [c.159]

    Как уже обсуждалось в гл. 7, митохондрии и хлоропласты отличаются от других окруженных мембраной органелл тем, что имеют свои собственные геномы. Природа )тих геномов и близкое сходство белков митохондрий и хлоропластов с белками некоторых современных бактерий подтверждает гипотезу о том, что эти органеллы произошли от бактерий, которые были захвачены другими клетками и первое время существовали в симбиозе с ними (см. разд. 7.5.16). Согласно гипотетической схеме, приведенной на рис. 8-4, А, внутренняя мембрана митохондрий и хлоропластов соответствует исходной плазматической мембране бактерий, а матрикс этих органелл произошел из бактериальной цитоплазмы. Таким образом, эти две органеллы оказались изолированы от путей транспорта, связывающих полости большинства органелл друг с другом и с внеклеточным пространством. [c.9]

    Расположение органелл, показанных на фиг. 76, внутри паренхиматозной клетки печени крысы. Видны я (ро, митохондрии и длинные, тонкие очертания цистерн эндоплазматической сети (ЭС). Множество рибосом находится либо на поверхности цистерн, либо в матриксе цитоплазмы. Цистерны обычно уложены в стопки по 6—12 штук. Одной своей стороной такое образование часто примыкает к комплексу Гольджи можно заметить, что мелкие гранулы определенного типа располагаются на концах цистспн и па пузырьках, лежащих между ЭС и комплексом Гольджи, а также па расширенных концах цистерн и на сферических пузырьках самого комплекса Гольджи (КГ). Знаком обозначены отдельные стадии переноса белка от ЭС к комплексу Гольджи, где происходит подготовка белков для зксиорта . С другой стороны стопки цистерн ЭС граничат со скоплениями гликогена и с пузырьками аграну,лярн( й эндоплазматической сети. Эти две формы ЭС часто являются продолжением друг друга создается впечатление, что агранулярная форма может развиться из гранулярной. Некоторые исследователи, основываясь, правда, на недостаточно полных данных, считают, что агранулярная сеть принимает участие в переносе глюкозы из клеток печени в процессе г.ликогенолиза. В цитоплазме видны также лизосомы (Лиз), содержащие остатки органелл и матрикса, очевидно предназначенные д.ля переваривания, и микротельца (Мт) неизвестного назначения, по всей вероятности, богатые ферментами. [c.242]

    Основными элементами клетки являются цитоплазма и ядро.. Цитоплазма представляет собой густую полужидкую массу. Ядро имеет более плотную консистенцию. Растительные клетк и заключены в прочную клеточную оболочку. Все содержимое клетки, лишенное клеточной оболочки, называется протопластом. Помимо ядра, в цитоплазме клетки обнаруживаются и другие крупные органеллы, видимые под световым микроскопом — пластиды и митохондрии (рис. 6). Кроме того, в ней находятся также многочисленные субмикроскопические структуры, такие, как аппарат Гольджи, эндоплазматическая сеть, рибосомы,, микротрубочки и др. Все они погружены в гиалоплазму, слул<а-щую матриксом цитоплазмы. [c.22]

    Гиалоплазма (основная плазма, матрикс цитоплазмы) — основная внутренняя среда клетки, она занимает все пространство между мембранами эндоплазматической сети, органелла-ми, всевозможными включениями и другими структурами. Гиалоплазма (от греч. Ьуа1о8 — стекло) под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью, В ней во взвешенном состоянии находятся рибосомы, микротельца, микротрубочки и различные продукты метаболизма. [c.26]


    Этот процесс переноса матрикса цитоплазмы, ограниченный определенными участками, происходит с исключительной быстротой путем экзоцитоза. При этом локальный рост путем интуссусцепции легче всего наблюдать на удлиняющихся клетках, которые, не делясь, растут апикально, например, на корневых волосках, пыльцевых трубках, ризоидах и т. п. [c.105]

    Гиалоплазма — гомогенная бесструктурная прозрачная масса цитоплазмы. Она находится между дифференцированными в ней структурными компонентами — органоидами и включениями. В гналоплазме, называемой иногда матриксом цитоплазмы, происходят биохимические реакции, обусловливающие жизнедеятель- иость клетки, а также осуществляется транспорт веществ. [c.21]

    Основным способом обезвреживания и удаления аммиака у млекопитающих является образование мочевины, протекающее в клетках печени (орнитиновый цикл). Образование цитрулина происходит в митохондриях, а образование аргинина в матриксе цитоплазмы Этот процесс требует необходимого количества энергии и соответствующих ферментов. Поэтому при повреждении паренхимы печени и уменьшении АТР наблюдается увеличение в крови аммиака, аминного азота, уменьшение в крови и моче мочевины и мочевой кислоты. Задержка в организме аммиака приводит к токсическим явления.м, особенно со стороны центральной нервной системы. [c.232]

    Обычно для характеристики эффективности О.ф. используют величины Н /2е или /2е, указывающие сколько протонов (либо электрич. зарядов) переносится через мембрану при транспорте пары электронов через данный участок дыхат. цепи, а также отношение Н /АТФ, показывающее, сколько протонов нужно перенести снаружи внутрь митохондрий через АТФ-синтетазу для синтеза 1 молекулы АТФ. Величина q 2й составляет для г нктов сопряжения 1, 2 и 3 соотв. 3-4, 2 и 4. Величина Н /АТФ при синтезе АТФ внутри митохондрий равна 2 одиако еще один Н может тратиться на вынос синтезированного АТФ из матрикса в цитоплазму переносчиком адениновых нуклеотидов в обмен на АДФ Поэтому кажущаяся величина /АТФ ру,и равна 3. [c.339]

    Одна из систем транслокации производит обмен ADP на АТР. Этот адениннуклеотидный переносчик поставляет ADP в матрикс, где он подвергается фосфорилированию, и в отношении 1 1 переносит АТР в цитоплазму [60, 100—102 [. Отдельный переносчик ведает доставкой Pi, вероятно, в форме HjPO . Обычно полагают, что степень фосфорилирования = [ATP]/[ADP] [Pi]l имеет одно и то же значение снаружи и внутри митохондрии. Однако Клингенберг установил, что Rf снаружи в 10 раз больше, чем внутри [102]. Это должно означать, что вновь синтезированный АТР освобождается преимущественно снаружи внутренней митохондриальной мембраны. Меньшая часть АТР должна освобождаться внутри митохондрии, где она затрачивается на активацию жирных кислот, синтез белков и т, д. Пируват, по-видимому, тоже попадает в митохондрию с помощью собственного переносчика — по всей вероятности, вместе с протоном. С другой стороны, анионы дикарбоновых кислот, например малат или а-кетоглутарат, обмениваются в отношении 1 1, равно как и аспартат, и глутамат. [c.423]

    В последнее время появились данные, доказывающие, что креатинфосфат в мышечной ткани (в частности, в сердечной мышце) способен выполнять не только роль как бы депо легкомобилизуемых макроэргических фосфатных групп, но также роль транспортной формы макроэргических фосфатных связей, образующихся в процессе тканевого дыхания и связанного с ним окислительного фосфорилирования. Предложена схема переноса энергии из митохондрий в цитоплазму клетки миокарда (рис. 20.7). АТФ, синтезированный в матриксе митохондрий, переносится через внутреннюю мембрану с участием специфической АТФ—АДФ-транслоказы на активный центр митохондриального изофермента креатинкиназы, который расположен на внешней стороне внутренней мембраны в меж-мембранном пространстве (в присутствии ионов Mg ) при наличии в среде креатина образуется равновесный тройной фермент-субстратный комплекс креатин—креатинкиназа—АТФ—Mg , который затем распадается с образованием креатинфосфата и АДФ —Mg . Креатинфосфат диффундирует в цитоплазму, где используется в миофибриллярной креатинкиназной реакции для рефосфорилирования АДФ, образовавшегося при сокращении. Высказываются предположения, что не только в сердечной мышце, но и в скелетной мускулатуре имеется подобный путь транспорта энергии из митохондрий в миофибриллы. [c.655]

    Гликоген нредставляет собой большой разветвленный полимер глюкозы, содержащийся в виде гранул в цитоплазме (рис. 7-12) синтез и распад гликогена с высокой степенью точности регулируется нуждами организма (см. разд. 12.4.1). При повышении потребности в глюкозе гликоген расщепляется с образованием глюкозо-1-фосфата. В процессе гликолиза шестиуглеродная молекула глюкозы (или родственного ей сахара) превращается в две трехуглеродные молекулы пирувата (см. разд. 2.3.2), еще сохраняющие большую часть энергии, которая может быть извлечена при полном окислении сахара Эта энергия высвобождается только после переноса пирувата из цитозоля в митохондриальный матрикс, где пируват подвергается воздействию мультиферментного комплекса, который крупнее рибосомы. - пируватдегидрогеназного комплекса. Этот комплекс, содержащий множественные копии трех ферментов, пяти коферментов и двух регуляторных белков, быстро превращает пируват в ацетил-СоА (при этом в качестве побочного продукта выделяется СОг) (рис. 7-13). Этот ацетил-СоА, так же как и ацетил-СоА, образующийся при окислении жирных кислот, поступает в цикл лимонной кислоты. [c.435]

    Как видно из схемы, приведенной на рис. 23.18, если в клетки печени поступает большое количество глюкозы, в результате пируватдегидрогеназной реакции она превращается в пируват, карбоксилирование которого приводит к образованию оксалоацетата. Увеличение концентрации последнего усиливает транспорт ацетил-КоА с помощью цитратного механизма из матрикса митохондрий в цитоплазму Цитоплазматический цитрат активирует ацетил-КоА- [c.355]

    Безусловно, конкретные пути транспорта и комплектования тех или иных компонентов мембран требуют детального изучения. У митохондрий, например, часть мембранных структур (субъединиц белков и т. п.) синтезируется внутри митохондриального матрикса н затем переносится к внутренней мембране, в то время как другая часть синтезируется в шероховатом эндоплазматическом ретикулуме, вие митохондрии, и транспортируется к ней через всю цитоплазму. Б настоящее время биосинтез ряда мембранных систем изучен достаточно хорошо (Г. Шатц и др.). [c.589]

    Большинство клеток растений окружены жесткой и очень прочной полисахаридной оболочкой, которую можно сравнить с пластиком, армированным стекловолокном. Каркас клеточных стенок растений состоит из перекрещивающихся слоев длинных, вытянутых целлюлозных волокон, прочность которьк превьппает прочность стальной проволоки того же диаметра (рис. 11-19). Волокнистый каркас усилен похожим на цемент матриксом, образованным из структурных полисахаридов другого типа и из полимерного вещества лигнина. Очень толстые клеточные стенки древесины в стволах деревьев позволяют им вьщерживать чрезвычайно большие нагрузки (рис. 11-19), Клеточная стенка бактерий (рис. 11 -20) располагается снаружи по отношению к клеточной мембране, образуя вокруг клетки жесткую пористую оболочку. Она физически защищает нежную клеточную мембрану и цитоплазму клетки. Структурной основой клеточных сте- [c.316]

    Цитоплазматическая мембрана (ЦПМ). Цитоплазма каждой клетки окружена мембраной, которая отграничивает клетку от клетки и от окружающей среды. Клетки эукариот имеют, кроме того, многочисленные внутриклеточные мембраны, которые отделяют внутренний объем органелл, обеспечивающих специализированные метаболические функции. Бактерии и археи обычно лищены внутрицитоплазматических мембран (исключением являются метанотрофы, фототрофы и нитрифицирующие бактерии) и содержат только ЦПМ, которая состоит из простых фосфолипидов, образующих мембранный бислой, куда погружены многочисленные белки. Этот бислой обладает свойством избирательной проницаемости, препятствуя свободному продвижению большинства веществ внутрь клетки и из нее. В матрикс ЦПМ заключены также некоторые мембранные белки, имеющие ряд важных функций, включая преобразование и запасание метаболической энергии, регуляцию поглощения и выброса всех питательных веществ [c.29]

    АТР, образующийся в процессе окислительного фосфорили-рованИя в митохондриях, проникает в цитоплазму, транспортируясь сквозь внутреннюю мембрану митохондрий. В мембране имеется специфический переносчик — адениннуклеотид-транс-локаза он обеспечивает обмен молекулы одного адениннуклео-тида на молекулу другого, но в силу энергозависимости указанного процесса может поддерживаться дисбаланс данных нуклеотидов. Так, отнощение ATPrADP в цитоплазме часто существенно выще, чем в матриксе митохондрий [1890]. [c.79]

    С митохондриями же связаны и другие окислительные системы, а именно р-окисление жирных кислот, окисление сук-цината, окисление NADH за счет О2 и окислительное фосфо-рилирование. В согласии с этими наблюдениями находятся данные о том, что многие важные коферменты сосредоточены преимущественно в митохондриях. Так, например, здесь находится свыше 50% всего СоА печени и флавиннуклеотидов. Ни-котинамиднуклеотиды локализованы преимущественно в цитоплазме, однако их концентрация в матриксе митохондрий примерно равна их концентрации в цитоплазме. Мембрана митохондрий непроницаема для растворимых коферментов, и основным источником субстрата для системы цитохромов служит восстановление NAD+ матрикса в NADH митохондриальными дегидрогеназами. Перенос восстановительных эквивалентов между митохондриями и цитоплазмой осуществляется благодаря сложному челночному движению метаболитов [3103]. [c.92]

    Наличие различных изоферментов в органеллах может быть связано и с особыми условиями транспорта белка через мембрану из цитоплазмы в матрикс органеллы. Фумарат-гидратаза (КФ 4.2.1.2) присутствует и в матриксе митохондрий, и в цитоплазме клеток млекопитающих. Митохондриальная форма при электрофорезе движется в сторону анода медленнее, чем форма цитоплазматическая, но исследование межвидовых гибридных соматических клеток указывает на то, что обе эти формы могут быть продуктами одного гена и что различия между ними являются результатом постсинтетической модификации-[4761]. Эта модификация изофермента, по-видимому, довольно незначительна, и неясно, когда она совершается, — до или после проникновения фермента в митохондрию. Вопрос о механизме, с помощью которого в естественных условиях белки проникают в окруженные мембранами органеллы, окончательно не решен особенно трудно объяснить этот процесс в том случае, когда органелла окружена несколькими мембранами [479, 4112]. Лизосомы окружены одиночной мембраной при исследовании гомогенатов печени грызунов было установлено,, что фермент -D-глюкуронидаза (КФ 3.2.1.31) присутствует и в лизосомах, и в микросомной фракции, причем, хотя изофермент-ные его формы в этих компартментах различаются, они тем не менее образуются в результате посттрапсляционной модификации продукта трансляции одного гена. Эта модификация может-состоять в нековалентном присоединении какого-то пептида [2689], в частичном протеолизе или же в присоединении углевода [3574]. Возможно, однако, что лизосомы и эндоплазматический ретикулум имеют общее происхождене, и это облегчает транспорт белка между ними. [c.111]

    Специализированные функции, которые выполняют другие изоформы лактатдегидрогеназы, пока не выяснены. Изофермент 4 из семенников, обладающий широкой специфичностью, может присутствовать и в цитоплазме, и в матриксе митохондрий возможно, он играет роль переносчика восстановительных эквивалентов челночного типа между этими компартментами 1[452]. [c.112]

    У бактерий рибосомы прикреплены к молекулам мРНК, которые сами все еще связаны с ДНК-матрицей. В цитоплазме эукариотических клеток рибосомы, как правило, ассоциированы с цитоскелетом-фибриллярным матриксом. В ряде эукариотических клеток некоторая часть рибосом ассоциирована с мембранами эндоплазма-тического ретикулума и может быть выделена в виде ми-кросомной фракции. Всем рибосомам присуще одно общее свойство будучи заняты в синтезе белков, они находятся в клетке не в свободном состоянии, а обязательно бывают прикреплены прямо или опосредованно к клеточным структурам. [c.102]


Смотреть страницы где упоминается термин Матрикс цитоплазмы : [c.246]    [c.11]    [c.10]    [c.130]    [c.423]    [c.52]    [c.342]    [c.377]    [c.188]    [c.340]    [c.46]    [c.165]    [c.160]    [c.156]    [c.157]    [c.510]    [c.333]    [c.333]   
Основы биологической химии (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Цитоплазма



© 2024 chem21.info Реклама на сайте