Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фибриноген, растворимость

Фиг. 20. Растворимость белков в растворах сульфата аммония, фибриноген II — гемоглобин III — псевдоглобулин IV—сывороточный альбумин С V- Фиг. 20. <a href="/info/169119">Растворимость белков</a> в <a href="/info/767797">растворах сульфата аммония</a>, фибриноген II — гемоглобин III — псевдоглобулин IV—сывороточный альбумин С V-

    Кровяная плазма, полученная по описанной выше методике, представляет собой жидкость, слегка окрашенную каротиноидамн, и содержит следующие белки альбумины (растворимы в 5%-ном солевом растворе), липопротеины, фибриноген и протромбин. Из цельной крови без защитных добавок при стоянии через несколько минут выделяются хлопья в результате превращения растворимого глобулярного фибриногена в н< растворимый нитевидный белок—фибрин, нити которого образуют ячеистую структуру сгустков. Это превращение происходит под влиянием протромбина и ионов кальция. Центрифугирование свернувшейся крови приводит к отделению смеси фибрина и красных кровяных тел. Надосадочная жидкость представляет собой кровяную сыворотку, которая отличается от плазмы тем, что не содержит фибриногена. Витамин К является антигеморрагическим агентом, так как он снижает концентрацию протромбина. Цитрат и гепарин предупреждают свертыванис крови, связывая ионы кальция. [c.670]

    Глобулины — глобулярные белки, обладающие низкой растворимостью в солевых растворах и совершенно не растворяющиеся в воде. Полностью высаливаются раствором сульфата аммония в пределах насыщения 50%. Широко распространены в природе, в организме высших организмов выполняют защитную функцию. Так, глобулинами являются специфичные антитела, защитный белок крови (фибриноген) также глобулин. По химической природе глобулины близки к альбуминам, однако они несколько богаче аминокислотой глицином. [c.19]

    Глобулины встречаются во всех животных и растительных тканях. К глобулинам относится миозин — белок, содержащийся в мышцах, и фибриноген — белок крови, который при свертывании образует фибрин. Глобулины в воде не растворяются, но растворимы в разбавленных растворах солей. Глобулины имеют слабокислотный характер. [c.213]

    Структурообразующие белки тела человека называют фибриллярными белками (или волокнистыми, они имеют вытянутую, нитеобразную форму). Важнейшие фибриллярные белки животных — это кератин и коллаген белок кератин входит в состав волос, ногтей, мышц, рогов, игл и перьев коллаген — структурный компонент сухожилий, кожи, костей, соединительной ткани. При кипячении коллаген гидролизуется и образует растворимый в воде белок, называемый желатиной. В теле человека имеются растворимые белки, именуемые глобулярными белками. Альбумины, такие, как сывороточный альбумин, получаемый из крови животных, овальбумин яичного белка, лактальбумин молока, растворяются в холодной воде и слабом растворе соли. Глобулины, например глобулины плазмы крови, фибриноген, глобулин яичного белка, глобулин молока, растворяются в разбавленных растворах солей, но не в холодной воде. [c.384]


    После отщепления пептидов, получивших название фибрин-пептиды , фибриноген превращается в хорошо растворимый в плазме крови фибрин-мономер, который затем быстро полимеризуется в нерастворимый фибрин-полимер. Превращение фибрин-мономера в фибрин-полимер протекает с участием фибринстабилизирующего фактора—фактора ХП1 в присутствии ионов Са .  [c.605]

    Фибриноген — защитный белок крови. Относится к белкам глобулинового типа. Мол. масса 450 ООО. Состоит из двух фракций, различающихся по растворимости в зависимости от температуры. Концентрация фибриногена увеличивается в крови при патологических состояниях организма. Фибриноген — один из белков, обеспечивающих свертывание крови. [c.28]

    Белки агрегируют без денатурации не только под действием солей и органических растворителей. Полсон и др. [32] иссле-довали способность различных высокомолекулярных нейтралЬ ных водорастворимых полимеров осаждать белки плазмы. Хотя некоторые из них эффективно осаждали белки, высокая вязкость растворов полимеров препятствует их практическому использованию. Единственным исключением является полиэтилен-гликоль различной степени полимеризации. Растворы этого полимера при концентрации до 20% (вес/объем) имеют не очень большую вязкость, и многие компоненты плазмы осаждаются полиэтиленгликолем до того, как его концентрация достигает 207о (вес/объем). Наиболее эффективным является полиэтиленгликоль с мол. массой 4000 и выше для осаждения белков обычно используют полиэтиленгликоль двух типов — с мол. массами около 6000 и 20000. Поведение белков в растворах полиэтиленгликоля довольно сходно с их поведением в процессе осаждения органическими растворителями. Действительно, молекулу полиэтиленгликоля (ПЭГ) можно рассматривать как полимерный органический растворитель, хотя для получения нужной степени осаждения требуются более низкие его концентрации. При добавлении ПЭГ первым из плазмы выпадает в осадок фибриноген — довольно крупный белок, имеющий сильно асимметричные молекулы и обладающий наименьшей растворимостью в плазме. Затем (при нейтральном pH, близком к изоэлектрической точке) осаждаются у-глобулины, а вслед за ними и другие компоненты. Как и в органических растворителях, растворимость белков в растворах ПЭГ возрастает по мере удаления pH от их изоэлектрической точки. [c.81]

    Главное звено в свертывании крови — превращение растворимого белка фибриногена (фактор 1) под действием тромбина в фиб-рин-мономер, а затем путем полимеризации последнего — в нерастворимый фибрин-полимер. Фибриноген — высокомолекулярный белок, состоящий из грех пар неидентичных субъединиц — аА, рВ и Yi т. е. его структура (aA,fiB,v)2. Совокупность физико-хими-ческих данных позволила С. Халлу и X. Слэйтеру предложить модель пространственной организации фибриногена (рис. 134). [c.234]

    Такие белки, как основной белок миофибрилл мышц— миозин и белок крови — фибриноген, занимают промежуточное полож ие. Эти белки растворимы в солевых растворах, но их молекулы имеют палочковидную структуру. Растворы миозина и фибриногена обладают, подобно растворам фибриллярных белков, большой вязкостью. [c.36]

    Оба приведенных метода можно применять и для разделения смесей белков, обладающих различной растворимостью. Так, при постепенном увеличении концентрации сернокислого аммония р растворе белков кровяной сыворотки (при pH 6,5) сначала осаждается фибриноген, затем фракция, содержащая глобулины, и под конец альбумины. Глобулины могут быть разделены в свою очередь при помощи этого метода на три фракции — а, Р и у, осаждающиеся (в более или менее индивидуальном состоянии), когда концентрация сернокислого аммония в растворе достигает соответственно 1,34, 1,64 и 2,05 моль л-, альбумины осаждаются лишь при достижении концентрации 2,57 моль л. Подобное фракционирование можно осуществить также при помощи более эффективного метода осаждения этанолом. [c.417]

    Фибрины. В кровяном русле постоянно циркулирует растворимый белок — фибриноген. Если повредить артерии или вены, начинается цепь реакций, приводящая к превращению этого растворимого белка в нерастворимый фибрин. Фибрин образуется в крови при возникновении тромбов. [c.331]

    Другие белки осаждаются из водного раствора добавлением этилового спирта или иных подобных ему растворителей в умеренных концентр ащиях. При низких температурах, которые обычно требуются для предотвращения денатурации (0° или ниже) и при значениях рН, соответствующих минимальной растворимости, для осаждения большинства белков достаточно 40% этилового спирта. Многие белки осаждаются при значительно меньших концентрациях спирта например в интервале температур от О до —2° фибриноген осаждается при содержании этилового спирта, меньшем 10% [181]. При добавлении этилового спирта к сложной смеси, например >к плазме, компоненты ее постепенно осаждаются в порядке их растворимостей, причем большинство глобулинов выпадает в осадок гораздо легче, чем альбумины. Соответствующим регулированием дополнительных переменных, например рН, ионной силы раствора и температуры, можно достигнуть значительно более четкого разделения некоторых компонентов системы. [c.62]


    Разделение сложной смеси белков на индивидуальные белки осуществляется при помощи растворителей и (или) электролитов при этом выделяют различные белковые фракции в зависимости от их растворимости. Это свойство белков лежит в основе так называемых методов высаливания, часто используемых в клинических лабораториях. Белки плазмы осаждают при различных концентрациях сульфата натрия или сульфата аммония. При этом белки разделяют на три основные группы фибриноген, альбумин и глобулин. [c.319]

    Прежде чем рассмотреть исследования Астбери, кратко остановимся на предложенной им классификации белков, в основу которой был положен структурный признак [11, 12]. По этому признаку все белки делятся на два больших класса фибриллярных и глобулярных белков. Первые имеют вытянутую, волокнистую структуру вторые -форму глобулы (во времена Астбери они назывались корпускулярными белками). Такое разделение отчасти согласуется со спецификой функционирования белков и растворимостью их в воде. Фибриллярные белки входят в состав кожи, соединительных тканей, хрящей, скелета, волос, рогов и т.д. Как правило, в обычных условиях они химически инертны, не растворяются в воде и выполняют структурную или защитную функцию. Глобулярные белки играют активную роль в метаболизме, участвуя во всех процессах жизнедеятельности организма. Многие глобулярные белки растворимы в воде. Четкой структурной или функциональной границы между двумя классами белков, однако, провести нельзя. Например, миозин (белок мышц), хотя и имеет волокнистое строение, тем не менее химически не инертен. Функция миозина связана с превращением химической энергии в механическую работу. Несмотря на значительную условность, предложенная Астбери и сохранившаяся до сих пор классификация белков по структурному признаку остается все еще целесообразной. Сама идея разделения белков в зависимости от топологии структуры хорошо согласуется с одной из задач молекулярной биологии, а именно с установлением связи между строением (в том числе пространственным) и функцией биологических молекул. У. Астбери были изучены структуры разнообразных фибриллярных белков [13, 14]. Оказалось, что эти белки по структурному признаку могут быть разделены на две конформационные группы. Первая группа, названная по начальным буквам входящих в нее белков группой к.т.е.Г., включает такие белки, как кератин (белок волос, шерсти, ногтей и т.д.), миозин (белок мышц), эпидермин (белок кожи) и фибриноген (белок плазмы крови). Во вторую группу фибриллярных белков (группа коллагена) входят белки сухожилий, соединительных тканей, хрящей и др. Белки каждой группы имеют близкие картины рентгеновской дифракции, что указывает на их конформационную аналогию. [c.11]

    Групповое разделение белков. Высаливание — разделение белков на фракции по их растворимости. Принцип метода заключается в дегидратации белков (обычно с помощью сернокислого аммония) при pH, близком к Р1. Различные белки выпадают в осадок при разных концентрациях соли. Это грубый метод разделения на группы. Например, глобулины выпадают в осадок при полунасыщении, а альбумины — при полном насыщении (НН4)2804. Избирательная денатурация — это выпадение в осадок при нагревании раствора до 50 °С или при подкислении среды до pH 5,0. Если выделяемый белок устойчив к нагреванию и изменению pH, то часть ненужных белков можно удалить таким простым способом. Органические растворители при низких температурах используются для щадящего группового разделения белков. По методу Кона белки плазмы крови фракционируют спиртом при температуре 3—5 °С альбумины — спирт 40%, pH 4,8, при 1-5 °С р, у-глобулины — спирт 25%, pH 6,9, при 1-5 °С а-глобулины — спирт 18%, pH 5,2, при 1-5 °С фибриноген — спирт 8%, pH 7,2, при 1-3 °С а2-глобулин — спирт 40 , pH 5,8, при 1—3 °С. Диализ — освобождение белковых растворов от низкомолекулярных соединений (например, от сернокислого аммония (NH4)2S04). Белки не проходят через полупроницаемую мембрану, а низкомолекулярные вещества проходят, что и позволяет очистить раствор белков от низкомолекулярных примесей. Получаем группу (смесь) белков, обладающих близкими физико-химически-ми свойствами. [c.50]

    Фибриноген, легко растворимый белок плазмы, в результате протеолитического действия тромбина превращается в нерастворимый мономер фибрина. Тромбин расщепляет в фибриногене четыре пептидные связи между аргинином и глицином. В результате этого расщепления высвобождаются четыре пептида А-пептид из 18 [c.168]

    При свертывании крови растворимый глобулиноподобный белок плазмы крови — фибриноген (изоэлектрическая точка при pH 5,4) превращается в нерастворимый белок — фибрин (изоэлектрическая точка при pH 6,6). В норме в плазме крови около 0,3% фибриногена. Его превращение в фибрин, по-видимому, сходно с реакциями гидролитического расщепления и происходит при участии фермента тромбина. В плазме крови, циркулирующей в сосудах, находится неактивная форма тромбина — протромбин (тромбоген, претромбин не применяется). Для образования активного тромбина необходимо взаимодействие, по крайней мере, трех компонентов 1) неактивного протромбина (тромбогена), 2) тромбокиназы, находящейся [c.218]

    Особенно важную защитную функцию выполняют белки н процессе свертывания крови у позвоночных. На последней стадии этого сложного процесса, включающего 12 факторов (из них 11 белковых) и начинающегося при понрежденни сосуда, растворимый белок плазмы фибриноген, синтезируемый в печени, переходит в фибрин, закрывающий рану. [c.427]

    Образование студня наблюдается, как известно, при свертывании крови, однако этот процесс не связан с денатурацией. При свертывании крови растворимый белок фибриноген превращается в нерастворимый фибрин. Этот процесс превращения связан с действием тромбин-фермента. Молекулы фибриногена сами по себе к образованию студня не способны. Тромбин-фермент расщепляет специфически несколько пептидных связей у фибриногена и оголяет у него некоторые реактивные центры. Взаимодействуя при встрече этими реактивными центрами, молекулы видоизмененного фибриногена, как показали В. А. Белицер и Е. Л. Ходорова (1950—1952 гг.), образуют сетку фибрина. В образовавшемся сплошном студне быстро наст шает синерезис. [c.301]

    Многие полипептиды и белки синтезируются в виде цепей, имеющих большее число аминокислотных остатков, чем конечные функционально-активные структуры, присутствующие в клетке или секретируемые в кровь и другие жидкости организма. Так называемый процессинг этого предшественника с образованием более короткого белка осуществляется с участием ряда протеолитических ферментов. Здесь будет приведено лишь несколько примеров таких превращений, более подробная информация представлена в последующих главах. Один из примеров зимогенов (неактивных предшественников протеолитических ферментов) —трипсиноген, который при гидролизе одной пептидной связи превращается в активный фермент — трипсин (гл. 8). Фибриноген представляет собой растворимый белок плазмы крови, превращающийся в результате протеолиза в нерастворимый фибрин кровяных сгустков, предохраняющих организм от больших потерь крови при поражении кровеносных сосудов (гл. 29). Проинсулин, состоящий из одной полипептидной цепи с внутримолекулярными дисульфидными мостиками, в результате протеолиза дает активный инсулин, состоящий из двух пептидных цепей и образующийся за счет выщеплепия внутреннего пептидного сегмента из полипептидной цепи предшественника (гл. 46). Наконец, состоящий из трех цепей нерастворимый фибриллярный белок, коллаген, образуется в результате протеолитического расщепления предшественников, имеющих более длинные аминокислотные последовательности (с дополнительными пептидными сегментами в NH2- и СООН-концевых частях), чем цепи коллагена (гл. 38). Эти примеры иллюстрируют также возможные пути участия протеаз в контроле биологических процессов. [c.200]

    Глобулины —слабокислотные белки, не растворимые в воде, но хорошо растворимые в разбавленных нейтральных растворах солей (таких как 5 %-ый раствор хлорида натрия) и в растворах щелочей. Обратимо осаждаются из раствора при его насыщении сульфатом аммония (до 50 %). Содержатся в бобовых и злаковых растениях (главнейшие источники растительных белков для человека), в плазме крови (серумглобулин, фибриноген), в тканях (клеточный глобулин), молоке (лактоглобулин) и яйцах (овоглобулин). [c.549]

    Глобулины не растворяются в чистой воде, но растворяются, например, при небатьших концентрациях солей. Встречаются в крови, например растворимый фибриноген, который в процессе свертывания крови, превращается в нерастворимый белок фибрин. [c.80]

    Олькотта 41 а], полностью этерифицирует целый ряд белков [416]. Подобным же образом, окиси, за исключением эпихлоргидрина, не вступают в -реакцию с карбоксильными труппами шерсти - давление, -не наблюдавшееся в случае других белков [42]. Бейли (43] отметил, что такие способы экранирования, как метод ДНФ-производных, применялись преимущественно к растворимым корпускулярным белкам. Он распространил этот метод на растворимые асимметрические белки — тропомиоаин, миозин и фибриноген — и провел сравнительное физико-химическое исследование указанных белков. Было найдено, что в миозине реагируют все боковые цепи лизина, а в тропомиозине — только около 85% их. Неожиданно оказалось, что эти белки представляют собой, ловвдимому, циклические полипептиды, так -как в их молекулах не было обнаружено свободных концевых аминогрупп. Подобное же наблюдение было сделано ранее для яичного альбумина, однако оно может быть объяснено наличием связи с прсстетической углеводной группой [36]. Эти интересные результаты следует еще раз проверить с помощью анализа концевых групп, особенно карбоксильных. [c.277]

    Простые и сложные белки. В зависимости от химического состава белки делятся на простые и сложные. Простые белки состоят только из аминокислот, среди которых есть растворимые в воде (гистоны, альбумины, фибриноген) и не растворимые (глобулины, миозин, коллаген, осеин, кератин). Сложные белки состоят из белковой и небелковой частей. Небелковая часть может быть представлена углеводами, нуклеиновыми кислотами, липидами, фосфорной кислотой, окрашенными (хромо-) веществами. В зависимости от природы небелковой части сложные белки делятся на гликопротеиды, нуклеопротеиды, липопротеиды, фосфопротеиды, хромопротеиды. Все они выполняют разнообразные функции в организме. [c.229]

    На рис. 7.2 представлены результаты изучения литического действия комплексов иммобилизованного гепарина на неста-билизированный фибрин [60]. Из этого рисунка видно, что и по характеру литического действия иммобилизованный гепарин мало отличается от гепарина в растворе наиболее активными реакции лизиса являются комплексы иммобилизованного гепарина с фибриногеном и тромбином. Замедление скорости лизиса по мере протекания реакции позволило авторам работы [58] предложить наиболее вероятный механизм этого явления, который заключается в связывании комплексами иммобилизованного гепарина растворимого фибрин-мономера (равновесная концентрация этого вещества составляет 6,3-10 моль/л) с по- следующим превращением связанного фибрин-мономера в неспособные вступать в дальнейшую полимеризацию с образованием фибрина соединения. При этом в результате обратимости перехода фибрин-мономера в нестабилизированный фибрин рав- [c.260]


Смотреть страницы где упоминается термин Фибриноген, растворимость: [c.399]    [c.340]    [c.1053]    [c.95]    [c.35]    [c.178]    [c.488]    [c.54]    [c.54]    [c.59]   
Основы биологической химии (1970) -- [ c.74 ]




ПОИСК







© 2025 chem21.info Реклама на сайте