Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий в цинковых рудах

    Источником получения галлия являются отходы, образующиеся в процессе получения алюминия и переработки цинковых руд. Разделение гидроксидов галлия н алюминия основано на различной растворимости их в воде. В щелочной среде гидроксид алюминия легче осаждается, чем гидроксид галлия. Из щелочного раствора галлий выделяется посредством электролитических методов. [c.338]


    Индий открыт в 1863 г. Ф. Райхом и Т. Рихтером при спектроскопическом исследовании на содержание таллия цинковой руды из Фрей-берга. Наряду с зеленой линией таллия они обнаружили ярко-голубую линию нового элемента. Название индий было дано по окраске этой линии спектра. До открытия периодического закона индий вследствие того, что он встречается в цинковых рудах, считали аналогом цинка и приписывали ему валентность П. Д. И. Менделеев при создании периодической системы исправил валентность и, соответственно, атомную массу индия и указал, что он — аналог алюминия. [c.281]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Кадмий содержится в цинковых рудах, причем содержание его обычно в 200 раз меньше, чем цинка. Он отделяется от цинка фракционной дистилляцией или электролизом. Кадмий, плакированный алюминием, применяется в регулирующих стержнях исследовательских реакторов. Сплав, состоящий из 80% А , 15% 1п и 5% С(1, может найти применение в водяных реакторах, работающих под давлением [9]. [c.411]

    Анализ свинцово-цинковых руд, описанный Амином и Фара-хом [55], является примером анализа, проводимого почти полностью комплексо метрическими методами. Эти руды наряду с основными металлами — цинком и свинцом — содержат еще различные количества железа, алюминия, марганца, магния и кальция. Кроме того, в этих рудах встречаются в небольших количествах мышьяк, кадмий, олово, медь, молибден и титан. [c.466]

    Галлий. В отличие от бора и особенно алюминия галлий является редким рассеянным элементом содержание его в земной коре составляет 4-10 %. Он содержится в виде примеси в рудах различных цветных металлов и его извлекают из отходов при переработке цинковых руд и бокситов. [c.461]

    Разработаны методы определения цинка в золах растений [15], в почвах [17], в фосфористых бронзах [190], в винах [205], в меди, алюминии, цирконии, сплавах на их основе [8, 36], в цирконии [210], в кадмии [175], в металлах [248] в биологических объектах [125, 175], в сталях [175], в металлургических образцах [8, 9] в металлическом золоте [246] методы определения цинка и кадмия в рудах, свинце, ионно-обменных смолах, электролитических растворах [175] методы определения кадмия в биологических жидкостях [125], в цинке и цинковых рудах [69, 175], в цирконии с использованием экстракции [36] методы определения ртути в различных объектах [70, 125, 151, 175, 197, 211, 212, 213]. [c.145]

    Железо определяли полярографическим методом в рудах и шлаках , в цинковых рудах п продуктах цинковой промышленности , в ннкеле , в алюминиевых сплавах , в сульфате алюминия , в пиролюзите ", в серной кислоте , в моторных маслах -, в почвах - и других материалах. [c.357]

    Применяют для ФО цинка в силикатных, цинковых рудах, хвостах, горных породах, сплавах алюминия [346]. [c.168]

    До открытия периодического закона индий вследствие того, что он встречается в цинковых рудах, считали аналогом цинка и приписывали ему валентность 2. Д. И. Менделеев, создавая периодическую систему, исправил валентность и атомную массу индия и указал, что индий является аналогом алюминия. [c.88]

    Прогрессирующая добыча металлов, особенно в последние десятилетия XX в., существенно сказалась на природных ресурсах сырья. Богатые металлом руды, расположенные вблизи металлургических центров, оказались выработанными, новые месторождения руд, разведанные геологами, находятся обычно далеко от места их переработки. Поэтому в переработку идут руды с пониженным содержанием металла и с нежелательными примесями, что сильно удорожает получаемый металл. Уже сейчас резко ощущается дефицит некоторых руд, например бокситов, для получения алюминия и высококачественных железных руд, не говоря уже о медных, цинковых и никелевых рудах. Таким образом, перед металлургами возникает задача разработки технологии извлечения металлов из более бедных руд (убогих), что, в свою очередь, связано с большей энергоемкостью металлургических процессов. [c.285]

    Обычно же галлий находят в цинковых, алюминиевых, железных рудах, а также в каменном угле — как незначительную примесь. И что характерно чем больше эта примесь, тем труднее ее извлечь, потому что галлия больше в рудах тех металлов (алюминий, цинк), которые близки ему по свойствам. [c.102]

    В производстве тетрахлорида германия используют преимущественно промежуточные продукты и отходы металлургической переработки медно-свинцово-цинковых сульфидных руд. После нескольких ступеней обогащения получают германиевые концентраты, в которых германия — обычно в оксидной форме (СеОг) — содержится от одного до нескольких десятков процентов. Кроме ОеОг в концентратах содержатся оксиды железа, кремния, алюминия, кальция, магния, титана и др. Германий содержится также в углях. В процессе сжигания энергетических углей на электростанциях накапливается в летучей золе до 0,01% германия. Заметными источниками сырья для получения тетрахлорида германия могут быть шлифпорошки и шламы, образующиеся при резке и шлифовке кристаллов германия, а также отходы при раскрое [c.214]

    В литературе описаны методики определения цинка в силикатных породах [1], воде и воздухе [2], графите, молибдене, ниобии, тантале и вольфраме [3], цинковых бронзах [4], железных рудах (5], в сплавах на основе магния и алюминия [6]. Авторы указанных работ применяли в качестве источника света лампу с полым катодом. [c.97]

    Галлий относится к рассеянным элементам. Он встречается в природе в виде соединений (распыленных в малом количестве) в некоторых алюминиевых, цинковых, железных, свинцовых, германиевых, медных, титановых рудах (глиноземы, сфалериты, пириты, медный колчедан, свинцовый блеск, германит и т. д.), в минеральных водах, в морской воде и угольных залежах. Так как значения ионных радиусов Ga + и АР+ близки, галлий замещает алюминий в бокситах, а поскольку константы решеток ZnS (5,418 А) и GaS (5,635 А) почти одинаковы, галлий входит в кристаллическую решетку обманки. Содержание галлия в земной коре составляет 4 10 вес. %. [c.318]


    Алюминий — самый распространенный элемент в земной коре, который входит в состав таких пород, как полевой шпат и слюда. Наиболее доступны залежи гидратированных оксидов типа бокситов АЬОз-пНзО, а также залежи криолита Ма-зА1Рб. Галлий и индий встречаются лишь в следовых количествах в алюминиевых и цинковых рудах. Таллий — также редкий элемент его получают из пыли, которая осаждается на фильтрах при очистке дыма при обжиге пирита и других сульфидных руд. [c.294]

    Алюминий — обычный металлический элемент земной коры, он широко распространен в природе в виде силикатов (слюда, полевые шпаты), гидратированной окиси (боксит) к криолита (ЫазА1Р ). Другие три элемента встречаются только в следовых количествах. Галлий и индий встречаются в алюминиевых и цинковых рудах, но самый богатый источник содержит менее 1% галлия и еще меньше индия. Таллий является широко распространенным элементом его обычно извлекают из дымовой пыли, образующейся при обжиге некоторых руд, главным образом пирита. [c.283]

    Если перед аналитиком стоит задача определения примесей, то возникает проблема рационального выделения их или отделения основы. При этом можно использовать те же рекомендации, которые приведены для металлов. После перевода в раствор получаются те же растворы, что и при растворении металлов. Для определения примесей в силикатных породах очень часто используют разложение силикатов фтористоводородной и азотной кислотами. В этом случае кремний, составляющий основу силиката, удаляют в виде летучего тетрафторида кремния. Однако в остатке кроме примесей могут остаться соединения алюминия, составляющие, наряду с кремнием, основу многих силикатов. Для отделения его от других катионов можно использовать обработку щелочью. Особенности отделения других элементов можно найти в специальных руководствах. Полученный таким образом остаток подвергают систематическому анализу. В тех случаях, когда требуется определить только присутствие определенного элемента, после описанного выше переведения в растворимое состояние поступают так же, как это описано для металлов. В некоторых случаях определение отдельных элементов, если их соединения составляют в минерале отдельную фазу, может быть осуществлено описанными далее методами фазового анализа. Например, для определения окнсных форм меди (СиО, Си504, СиСО ) в свинцово-цинковых рудах обрабатывают руду сульфитом натрия и 5%-ной серной кислотой, которые переводят в раствор все подобные соединения меди в полученном растворе тем или другим методом можно открыть медь. [c.304]

    Д. И. Менделеев внес исправления в атомные массы и некоторых других элементов, увеличив или уменьшив их в 1,5 или 2 раза. Например, он увеличил принятую для урана атомную массу в два, а атомные массы индия и церия — в 1,5 раза. История открытия индия и определение его атомной массы представляют большой интерес. Индий был открыт в цинковой руде (1863 г.) при помощи спектрального анализа. При внесении соединений индия в пламя последнее окрашивается в интенсивно синий цвет, напоминающий цвет краски индиго. Отсюда и название этого элемента — индий. Был определен эквивалент индия он оказался равным 37,7. Поскольку индий спутник цинка, то было решено считать, что соединения его изоморфны соединениями цинка, а следовательно, валентность индия равна двум, и тогда атомная масса его равна 75,4 (37,7 2) Приняв, что индий двухвалентный металл, его пришлось бы поместить в таблице элементов на место, занимаемое цинком или стронцием. Но валентность этих элементов к тому времени была установлена. Оба они двухвалентны. Исходя из изложенного и учитывая свойства, Менделеев делает еыеод, что индий трехвалентен. Такое решение вопроса было достоверным, так как цинку в природе сопутствуют и трехналентные элементы. К тому же окись индия сходна с окисью алюминия. Р. Бунзен определил удельную теплоемкость индия она оказалась, по его определению, равной 0,0569 кал. [c.96]

    Алюминий определяют также в цинковых рудах и продуктах их перера ютки И в магниевых сплавах . [c.256]

    Галлий довольно распространен в природе. Содержание его в емной коре составляет (ио массе) 1,9-10 %, однако он — элемент рассеянный и встречается в рудах, содержащих алюминий (бокситы), цинк (цинковая обманка), германий (каменный уголь), из которых его и добывают. Едипствснный самостоятельный минерал, содержаишй галлий,— галлит СиОа82- [c.338]

    Индиевые руды рекизит Си1п32 и индит РеТпЗз также встречаются очень редко. В основном индий получают при переработке цинковых, кадмиевых и оловянных руд. Нахождение его в последних подчеркивает его горизонтальную аналогию с кадмием и оловом. Извлечение иидия сводится к обогащению им исходного продукта и действию на концентрат серной кислотой. Черновой индий извлекают из растворов реакцией замещения металлическим цинком или алюминием. Особочистый индий получают зонной плавкой. [c.157]

    Серебро большей частью получают как побочный продукт при переработке сульфидных руд тяжелых ме таллов (медных, свинцово-цинковых и других), в которых почти всегда в виде примеси находится сульфид серебра АдгЗ. Выделение золота из руд, в состав которых оно часто входит в виде зерен и листочков, осуществ ляют различными способами самородное золото из богатых руд извлекают механическим способом, а из бедных руд—методом цианирования. Последний метод основан на способности золота растворяться в растворах цианидов (например, ЫаСЫ, КСМ) с образованием растворимых комплексных соединений. Из этих растворов золото осаждают с помощью цинка или алюминия. [c.418]

    С помощью солохромового фиолетового определяют алюминий в стали [739, 1121], ферротитане 778], в сплавах Ре — V, Ре — 2г и Ре — Т [251а], в РЬ — 5п-сплавах [566], в почвах [1], в рудах [257], цинковых покрытиях [257] и др. Предложены методы одновременного определения алюминия и цинка в магниевых сплавах [744], алюминия и магния в горных породах [708]. Предложено полярографическое определение алюминия по окислению его комплекса с солохромовым фиолетовым на вращающемся графитовом пиролитическом электроде [726]. Реагент и алюминий на фоне 0,2 М ацетатного буферного раствора с pH 4,7 дают анодные волны с ./, = + 0,53 б и + 0,87 е, соответственно. По волне комплекса можно определять 25 мкг А1/лл. При pH 4,7 определению алюминия не мешают 20-кратные количества Ag, Аз, Ве, В , Ое, С( , Са, Сг, Си, Hg, и, Mg, Мо, N1, РЬ, Рг, 5Ь, 5п, ТЬ, Т1, и, А /, Тп, 2г, РОГ и растворенного кислорода. Мешают Ре (III), V (V), Т1 (IV), Со, Мп и Р". [c.144]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Получение. Основной источник получения Г.— алюминиевое и, в меньшей степени, цинковое производство. При различных способах переработки бокситовой или нефелиновой руды после рафинирования алюминия Г. выделяется в ходе пирометаллур-гических и гидрометаллургических процессов посредством электролиза, карбонизации с последующей плавкой в вакууме или вытягиванием монокристалла из расплава. Оксид Г.(1П) получают обезвоживанием гидроксида Г, (П1). Сульфат Г. (П1) кристаллизуется из сернокислых растворов в виде гидрата, который обезвоживается при нагревании. [c.225]

    Минералы, в состав которых галлий входит в качестве основного компонента, неизвестны. Он, однако, широко распространен в природе и в незначительных концентрациях встречается совместно с алюминием, железом, марганцем, цинком, свинцом и индием. Следы его находятся во многих цинковых обманках, железных рудах и каолине. Спектроскопические следы галлия всегда присутствуют в бокситах и почти во всех продуктах, содоржапцих алюминийДо 0,02% галлия найдено в овар-ном алюминии. [c.549]

    Диметилдиоксим первым из диоксимов применялся для экстракционного отделения никеля [П06, 1201]. от диоксим часто используется в аналитической практике для отделения и концентрирования малых количеств никеля при анализе металлов, сплавов и солей алюминия и алюмосиликатов [931], железа [1004, 10491, кобальта и его солей 11002], урана и его сплавов [334, 12061, чистого электролитического хрома [324], сплавов на основе циркония 11061], кадмия [206] и многих других металлов и сплавов [563, 842]. Экстракция диметилдиоксимата никеля применяется также при анализе перхлоратных растворов легированных сталей [8461, содержа-Ш.ИХ хром, молибден, ванадий, никель, растворов электролитических ванн [678а1, цинковых электролитов для получения цинка [8641 и дpyfиx объектов [16, 5591. Описаны методы экстракционного выделения никеля при помощи диметилдиоксима из руд [429, 8151, медных солей [10011, галогенидов щелочных металлов [45] и из различных биологических материалов [404, 6771. [c.58]

    ЛИЙ, и тотчас же можно было видеть и указать на основании периодической системы, что это за элемент, тогда как не бьшо измерено ни одно из его свойств и только было известно, что это вещество представляет некоторую связь с цинком, находится в цинковой обманке и представляет летучие соединения. Можпо было предугадать, что этот элемент подобен алюминию, и поэтому он вначале был назван экаалюминием, а затем уже галлием. Все его предсказываемые свойства прямо подтвердились. В (18)79 г. Нильсон исследовал очень редкий минерал — гадолинит и, исследуя так называемые гадо-линитовые металлы, нашел и подтвердил вполне до тех пор не известные свойства металла, который следует за бором и который был назван экабором, а теперь скандием, потому что найден в Скандинавии. В нынешнем году найден и третий из недостающих здесь элементов, следующий за кремнием, которому предварительно было дано название экасилиция. Его атомный вес около 72 открыт он был в фрейбергской серебряной руде и назван Винклером германием. Все предсказанные для него свойства оправдались вполне. Вот эти открытия неизвестных элементов и предсказания заранее их свойств указывают, что в действительности зависимость Свойств элементов от величины атомного веса является периодической зависимостью. Таким образом, мы в предшествующем изложении познакомились с первою основною законностью химической статики, а именно с периодическим законом, относящимся к простым телам и выражающим множество различных свойств. По этой-то причине, что многие различные причины выражаются периодическим законом, мы можем все остальные сведения, относящиеся к простым телам и элементам, подвести под этот закон и, следовательно, можем оставить изучение статики элементов и прямо перейти к статике сложных тел. Но прежде, чем сделать это, я считаю весьма полезным для дальнейшего понимания периодического закона указать еще на два исследования, к этому закону относяпщеся, а именно для выражения величин атомных весов. Когда мы располагаем элементы в периодической зависимости и наблюдаем те отношения в изменении свойств, которые существуют с последовательным возрастанием атомных весов, тогда мы руковод- [c.273]

    Большое количество карбоната натрия используется в цветной металлургии в основном при производстве глинозема из бокситов методом спекания криолита, при переработке свинцово-цинковых, кобальт-никелевых, а также вольфрамомолибденовых руд. При получении алюминия, никеля, вольфрама и других цветных металлов сода применяется не только в металлургическом процессе, но и при флотации руд цветных металлов. [c.9]


Смотреть страницы где упоминается термин Алюминий в цинковых рудах: [c.167]    [c.154]    [c.310]    [c.167]    [c.215]    [c.107]    [c.21]    [c.323]    [c.154]    [c.107]   
Химико-технические методы исследования (0) -- [ c.579 ]




ПОИСК





Смотрите так же термины и статьи:

Цинковая



© 2025 chem21.info Реклама на сайте