Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроксидов разделение

    Источником получения галлия являются отходы, образующиеся в процессе получения алюминия и переработки цинковых руд. Разделение гидроксидов галлия н алюминия основано на различной растворимости их в воде. В щелочной среде гидроксид алюминия легче осаждается, чем гидроксид галлия. Из щелочного раствора галлий выделяется посредством электролитических методов. [c.338]


    В качестве адсорбентов (как правило, в адсорбционной газовой хроматографии) при разделении углеводородных систем применяются также графитированная сажа, цеолиты, пористые полимеры, гидроксиды и соли металлов. Иногда эти адсорбенты используются и для разделения углеводородов методом жидкостной колоночной хроматографии. Так, с помощью цеолитов ЫаХ и СаХ арены, полученные при экстракции масляных фракций фенолом, разделялись на три фракции в соответствии с размерами молекул. [90]. [c.64]

    Для разделения и концентрирования малых количеств одних элементов (микроэлементов) из не слишком концентрированных растворов других элементов часто применяют соосаждение микроэлементов с рядом карбонатов, сульфидов и гидроксидов. Однако при некоторых, более высоких концентрациях растворов соосаждение делается неэффективным. [c.18]

    Анализируемый раствор пропускают через колонку с ГДЦ, который сорбирует ионы молибдена(У1) и вольфрама(У1). Далее проводят ступенчатое элюирование сорбированных ионов молибден (VI) десорбируют 0,3 М раствором гидроксида натрия в 0,15 М сульфате натрия, после десорбции молибдена (VI) вольфрам(VI) вымывают 0,1 М раствором гидроксида натрия. В растворах после разделения молибдат- и вольфрамат-ионы определяют фотометрическим методом. [c.332]

    Некоторые пространственно-разделенные аддукты были синтезированы в Ленинградском технологическом институте методом деструкционно-эпитаксиального осаждения (ДЭП, см. гл. XV), исходя из силикагеля, а также ряда других гидроксидов и халькогенидов металлов. В частности, были получены аддукты основной поликремниевой соли меди с гидросиликатом меди, состав которых выражается общей формулой  [c.47]

    Очень многие катионы образуют малорастворимые соединения с анионами слабых кислот или гидроксид-ионами, в связи с чем большое значение имеет контроль pH раствора и поддержание его постоянной величины. Так, например, создавая разные значения pH раствора, можно осаждать гидроксиды разных металлов, добиваясь их количественного разделения. Этот прием получил название осаждения при контролируемом pH. Часто используют при количественных разделениях также процессы комплексообразования и осаждения органическими реактивами. [c.156]

    Разделение гидроксидов и солей слабых кислот [c.156]

    Разделение гидроксидов. Типичным примером аналитической задачи этого рода является разделение трех- и двухзарядных катионов, например, отделение Fe + от в виде гидроксидов. [c.157]


    Вычислить интервал значений pH. раствора, в котором обеспечивается количественное разделение ионов путем осаждения гидроксидов а) Ре " от б) от Mg  [c.169]

    Общие схемы анализа катионов ill группы. Известно несколько схем анализа катионов III группы, которые отличаются друг от друга главным образом методами разделения их на отдельные подгруппы. В их основе лежит различие в химических свойствах гидроксидов, сульфидов, устойчивости комплексных ионов, в частности аммиакатов, и некоторых других. В ходе дальнейшего изложения будут подробно рассмотрены пероксидный и аммиачный методы. [c.275]

    АДСОРБЕНТЫ — высокодисперсные природные или искусственные материалы с большой поверхностью, на которой происходит адсорбция веществ из соприкасающихся с ней газов или жидкостей. Наиболее важные А. активированный уголь, силикагели, алюмосиликагели, сажа, оксиды и гидроксиды некоторых металлов (главным образом, алюминия), губчатые металлы, природные минералы, глины (бентонит). А. применяют в противогазах, в качестве носителей катализаторов, для очистки газов, спиртов, масел, для разделения спиртов, при переработке нефти, в медицине для поглощения газов и ядов. [c.8]

    При действии на хлорную воду раствором гидроксида натрия образуется раствор хлорноватистокислого натрия, так называемая жавелевая вода, обладающая практически теми же окислительными свойствами, что и хлорная вода. Получить жавелевую воду электролизом еще проще—достаточно угольные электроды опустить в разбавленный раствор хлорида натрия, налитый в обычный стакан. При электролизе без разделения электродных пространств образующийся хлор сразу [c.269]

    В основу разделения оксидов на кислотные и основные (см. гл. II, 1) были положены свойства образуемых ими гидроксидов. Кислотным и основным оксидам соответствуют гидроксиды, относящиеся к классу кислот или оснований. Кислоты представляют собой гидроксиды неметаллов, в то время как основания являются гидроксидами металлов. Следует отметить, что растворимость в воде характерна только для оксидов наиболее типичных металлов и неметаллов. Оксиды остальных элементов-в воде, как правило, нерастворимы. Однако любому солеобразующему оксиду соответствует гидроксид. [c.133]

    Рассмотрим порядок расположения зон в хроматограмме при разделении А + и Си2+ в виде их гидроксидов, являющихся разнотипными соединениями т Ф п). По уравнению (189) получаем  [c.221]

    Рассчитаем, будет ли полным разделение катионов Fe +, d + и Ag+ в виде гидроксидов, а также анионов S N , СР и СгаО в виде их солей с серебром из растворов, в которых концентрация каждого из этих ионов равна 0,01 г-ион/л. [c.223]

    Оптимальные условия поглощения ионов и расчет полноты их разделения. Из равновесий (202), (204) и (207) следует, что поглощение ионов на адсорбционно-хроматографической колонке зависит от pH среды чем меньше концентрация водородных ионов, тем лучше поглощаются разделяемые катионы. Это положение хорошо иллюстрируется кривыми на рис. 67 Следует иметь в виду, что чрезмерное повышение pH среды приводит к образованию гидроксидов металлов, поэтому получение адсорбционно-комплексообразовательной хроматограммы невозможно. [c.245]

    В решетках кристаллов гидроксидов щелочных металлов имеется ион ОН , т. е. эти решетки являются ионными и растворение гидроксида в воде, в сущности, сводится к разделению ионов металла и ОН и их последующей гидратации без образования каких-либо новых частиц (т. е. продуктов гидролиза). Типичными свойствами указанных оксидов является резко выраженный основный характер (способность, реагируя с водой, образовать растворимые щелочные гидроксиды, а с кислотами — соли), высокая температура плавления, большая теплота образования. Все они кристаллизуются в кубической системе, образуя кристаллы с ионными связями. [c.287]

    Рассмотренные три способа не могут дать удовлетворительного результата, если ионы очень мало различаются по свойствам и поглощаются ионитом почти одинаково. В этом случае эффективного разделения можно достичь, применяя метод ионообменной хроматографии с комплексообразователем, дающим с разделяемыми ионами комплексные соединения различной прочности. -Рассмотрим суть этого метода на примере разделения ионов редкоземельных элементов с применением лимонной кислоты в качестве комплексообразователя. Разделяемым катионам дают поглотиться в верхней части катионитовой колонки (сульфокатионит в ЫН4- или Н-формах). Затем через колонку пропускают растворы нитратного буферного раствора (лимонная кислота + гидроксид аммония), имеющие разные pH. При этом поглощаемые катионы образуют нитратные комплексные отрицательно заряженные анионы, прочность которых (и, следовательно, вымывание из катионитовой колонки) определяется pH и концентрацией цитратного буферного раствора. Так создаются условия для дифференциального вымывания поглощенных катионов. Чем прочнее образующийся комплексный анион, тем легче вымывается катион из колонки. [c.690]


    Для каждой области температур кипения анализируемых. веществ существует оптимальная пористость адсорбента для разделения низкокипящих, наиболее слабо сорбирующихся газов нужно использовать силикагели с высокой удельной поверхностью и средним диаметром пор не более 2 нм, для анализа углеводородных газов с температурой кипения не выше 10 °С — силикагели с диаметром пор 5—20 нм и для разделения более высококипящих углеводородов — соответственно более крупнопористые силикагели [36]. Модифицирование неоднородных крупнопористых силикагелей гидроксидом калия, поташом или силикатом калия приводит к уменьшению асимметрии пиков и повышению селективности разделения углеводородов j-С4 [37]. В качестве адсорбентов с полярной поверхностью, селективных по отношению к алкенам, используются также оксид алюминия [38] и цеолиты [39—40]. Полное разделение неуглеводородных компонентов газов нефтепереработки проведено на цеолите в режиме программирования температур 50—300°С [4.3]. [c.115]

    Для разделения азеотропных смесей на компоненты в лабораторных условиях используют методы, основанные на связывании одного из компонентов разделяемой смеси в прочное химическое соединение. Например, для получения абсолютного этанола азеотропную смесь, содержащую 4 % воды, обрабатывают прокаленным оксидом кальция (СаО) или сульфатом меди ( USO4). Вода образует гидроксид кальция [ a(0H)2l или медный купорос ( uSO -SHaO). Оставшийся этанол можно отогнать или отфильтровать от осадка. [c.222]

    При использовании N328 в качестве осадителя последовательность разделения катионов такая же, как в сероводородном методе. При действии НагЗ, МагСОз и NaOH катионы отделяют в виде нерастворимых в щелочах сульфидов, карбонатов и гидроксидов соответственно. В растворе остаются тиосоли, ионы алюминия и бериллия. Дальнейшее разделение проводят, обрабатывая осадой и раствор соляной кислотой. Недостатком метода является выделение больших количеств H2S при избытке кислоты. [c.80]

    Получение AljOj из бокситов по методу Байера служит иллюстрацией к использованию химических свойств при разделении. Этот метод, принцип которого обсуждался в разд. 16.5, основан на амфотерности гидроксида алюминия. Извлечение магния из морской воды, обсуждавшееся в разд. 17.2,-еще один пример разделения веществ по их химическим свойствам. [c.355]

    Анионы или кислоты, осаждающие большую группу катионов, называют групповыми реактивами. Такими реактивами являются, например, гидроксид щелочного металла NaOH, сероводородная кислота H2S и др. Последовательное применение групповых реактивов позволяет провести количественное разделение сложной смеси катионов на несколько аналитических групп. Применение групповых реактивов упрощает проведение анализа, позволяя разрабатывать универсальные схемы анализа, предусматривающие наличие в пробе самых различных комбинаций элементов. В то же время отсутствие осадка при действии группового реактива говорит об отсутствии в анализируемом растворе целой группы ионов. [c.156]

    Разделение в виде гидоксидов основано на очень большой разнице в растворимости гидроксидов различных элементов. Из малорастворимых солей слабых кислот в практике аналитической химии для разделения очень часто применяют соли сероводородной кислоты (сульфиды). [c.156]

    В. этих методах разделения используется свойство малорастворимых соединений переходить в раствор под действием веществ, образующих координационные соединения с катионом или анионом осадка. Например, при действии NaOH на растворы соединений железа (III) и алюминия сначала образуются гидроксиды этих элементов  [c.160]

    Разделение неорганических соединений проводят на неорганических ионитах (цеолитах, гидроксидах алюминия, железа и др.) или смолах (сополимерах стирола с дивинилбензолом). Для разделения биополимеров (белков, нуклеиновых кислот и др.) применяют крупнопористые иониты — производные целлюлозы и полидекстрана. Для хроматографического разделения катионов применяют сильнокислотные катиониты. Соединения кислотного характера в виде анионов разделяют на сильноосновных анионитах. Требуемую основность или кислотность ионитов достигают путем обработки их соответствующими буферными растворами. [c.360]

    Все гидроксиды хорошо растворимы в воде и являются сильными основаниями. Из гидроксидов щелочных металлов наибольшее значение имеют NaOH и КОН. Получаются они обычно путем электролиза водных растворов Na I и КС1 в электролизерах с разделенными катодным и анодным пространствами. [c.227]

    Электродиализ. Удаление ионных примесей из растворов электрохимическим методом с использованием мембран или диафрагм получило название электродиализа. Рассмотрим удаление сульфата натрия из воды в электродиализаторе с ионообменными мембранами. Простейший электродиализатор (рис. Х1У.З) состоит из трех отделений, разделенных двумя ионообменными мембранами, и двух электродов. Мембрана состоит из ионообменного материала, способного пропускать через себя либо катионы (ка-тионитовая мембрана — Мк), либо анионы (анионитовая мембрана— Ма). Вода, содержащая сульфат натрия, подается в среднее отделение электродиализатора. При подводе напряжения ионы натрия и водорода через катионитовую мембрану двигаются к катоду К, а сульфат-ионы и ионы гидроксида через аниони-товую мембрану — к аноду А. [c.380]

    Гидроксиды. Гидроксиды лантаноидов состава Ме(ОН)д — слизистые аморфные осадки, которые при нагревании, теряя воду, раскаляются (теплота кристаллизации) с образованием кристаллических модификаций. Све-жеосажденные гидроксиды гигроскопичны и поглощают из воздуха двуокись углерода. Основной характер гидроксидов и степень диссоциации при увеличении ионных радиусов растут. Гидроксиды лантаноидов сходны с гидроксидами щелочноземельных элементов, но менее растворимы в воде. Наиболее сильным основанием среди них является гидроксид церия (III), наиболее слабым Ьи(ОН)з- Недавно было установлено, что оксиды иттербия и лютеция обладают слабо выраженными амфотерными свойствами (Иванов-Эмин). Гидроксиды их также амфотерны. Различием в растворимости гидроксидов пользуются при дробном разделении элементов лантаноидов. [c.281]

    Аналитическое применение ионообменных процессов чрезвычайно разнообразно. Они используются в качественном и количественном анализе как вспомогательные операции в самых различных целях для концентрирования определяемых ионов, для удаления мешающих ионов, для разделения смеси как одноименно, так и разноименно заряженных ионов, для определения общего солесодержа-ния в растворах электролитов, для отделения катионов, образующих амфотерные гидроксиды, для выделения примесей и получения химически чистых препаратов при исследовании строения и прочности комплексных соединений, для отделения неэлектролитов от электролитов, или наоборот, и т, д. [c.139]

    Разделение смеси катионов на ионитных колонках может быть осуществлено при наличии в растворе соединений, обладающих амфотерными свойствами, и не обладающих ими. Раствор, содержащий такую смесь, пропускают через катионит в Н-форме, затем промывают колонку раствором щелочи. При этом катионы неамфотерных соединений образуют со щелочью гидроксиды, осаждающиеся на зернах смолы, а катионы амфотерных соединений образуют в избытке щелочи анионы и проходят в фильтрат. Так можно отделить алюминий, цинк, молибден, сурьму, вольфрам от железа, меди и др. [c.144]

    На рис. 52 показано разделение зон в первичной хроматограмме, содержащей асадки гидроксидов Ре(ОН)з (ПР=3,2-10-з ) и Со(ОН)г (ПР=1,6-Ю ) (см. рис. 52, а) и в промытой хроматограмме тех же веществ (см. рис. 52, б). При промывании первичной осадочной хроматограммы растворителем содержание в верхних зонах веществ, образующих нижние зоны, в данном случае Со(ОН)г, уменьшается и сводится к нулю (при большой разнице в растворимости выпадающих осадков). [c.193]

    Такой способ разделения амфотерных и неамфотерных элементов более эффективен, чем осаждение гидроксидов при действии избытка щелочи, так как в хроматографической колонке исключается возможность потери амфотерных элементов в результате процессов соосаждения. [c.195]

    Элюирование растворами щелочей. Этот метод эффективен тогда, когда элементы, входящие с состав осадков в хроматограмме, обладают амфотерными свойствами. Эффективность разделения можно предварительно рассчитать по уравнению (200), использовав константы с70йкости гид-роксокомплексов. Элюирование щелочью наиболее удобно, если один из разделяемых элементов обладает амфотерными свойствами, а другой нет. Например, при промывании осадочной хроматограммы гидроксидов железа (П1) и алюминия последний элюируется в виде гидроксокомплекса [А1 (0Н)4] а в колонке остается малорастворимый гидроксид железа. [c.241]

    Рассмотрим, например, образование хроматограммы при пропускании через колонку, содержащую окислитель, раствора смеси солей железа (И) и марганца (И). Сначала ионы Fe + окисляются до ионов Ре + и образуют вверху колонки буро-желтую зону гидроксида железа, затем образуется более темная зона диоксида марганца МпОа с высоким ре-докс-потенциалом. По мере фильтрования смеси через колонку диоксид марганца восстанавливается ионами Ре + анализируемой смеси до ионов Мп2+, которые перемещаются вниз, где вновь окисляются находящимся в колонке реагентом-окислителем. Зона второго компонента (марганца) фюрмируется в отсутствие третьего компонента только под воздействием реагента-окислителя колонки. Если продукт окисления второго компонента не может восстановиться первым компонентом анализируемой смеси, произойдет образование смешанной зоны и разделения не будет. Аналогичные процессы протекают на восстановительной колонке. [c.252]

    Пространственное разделение астков, на которых происходят анодный и катодный процессы, облегчает встречу окислителя с электронами, теряемыми металлом, и ускоряет коррозию. Если такого разделения нет, то окислитель непосредственно сталкивается с атомами металла и коррозия протекает по химическому механизму. Ионы металла и ионы ОН в водной среде образуют продукты коррозии гидроксид металла Ме(ОН) или его оксогидроксид МеО(ОН) 2- Возникновение гальванической пары возмо но по разным причинам. Рассмотрим некоторые из них. [c.259]


Смотреть страницы где упоминается термин Гидроксидов разделение: [c.603]    [c.188]    [c.91]    [c.204]    [c.375]    [c.90]    [c.196]    [c.101]    [c.228]   
Аналитическая химия Часть 1 (1989) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроксиды

Разделение гидроксидов и солей слабых кислот



© 2025 chem21.info Реклама на сайте