Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный магнитный резонанс, спектры резонанс

    Для чистого образца С60, содержащего изотоп С, спектр ядерного магнитного резонанса содержит только один резонанс. Это подтверждает предположение о равнозначном положении всех атомов углерода в молекуле С60. Молекула фуллерена С70 характеризуется более низкой симметрией по сравнению с молекулой С60, что подтверждается видом ЯМР-спектра образцов чистого СТО, который состоит из пяти пиков [I]. [c.9]


    Спектроскопия ядерного магнитного Характеристический спектр резонанса (ЯМР) [c.549]

    СПЕКТРЫ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА ПАРАМАГНИТНЫХ КОМПЛЕКСОВ ИОНОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ [c.163]

    Вопрос о распределении водорода является еще предметом дискуссий. Поскольку инфракрасные спектры недостаточно четкие, водород исследуют большей частью с помощью ядерного магнитного резонанса. Но этот метод, вполне удовлетворительный для жидкостей, трудно применить для твердых веществ. [c.32]

    Логическим завершением всех этих теоретических предпосылок явилось реальное доказательство существования алкильных и циклоалкильных карбкатионов (трет.бутильного, 2-метил-2-бутильного, адамантильного и др.) и изучение их спектров инфракрасных и ядерно-магнитного резонанса [7—9]. [c.146]

    За последние годы получил применение ядерный магнитный резонанс (ЯМР), который относится к радиоспектроскопическим методам. Явление ЯМР возникает под действием слабого радиочастотного поля, наложенного на сильное магнитное поле. ЯМР — это резонансный эффект изменения намагниченности вещества, который обнаруживают по возникновению электродвижущей силы индукции в катушке, окружающей образец исследуемого вещества. Спектр ЯРМ дает информацию о структуре соединения, о химической природе, пространственном расположении и числе атомов водорода в функциональной группе молекул, о ходе реакции, так как можно [c.230]

    По спектру ядерного магнитного резонанса можно определить свойства ядер, строение молекул, подвижность частиц в кристаллах в разных условиях, ЯМР применяется при изучении кинетики и механизма химических реакций, состояния вещества в растворах, процессов протонного обмена мел<ду молекулами в растворах, для анализа сложных смесей продуктов реакции. [c.62]

    Рассмотрим такую важную характеристику спектров ЯМР, как химический сдвиг, которая чрезвычайно чувствительна к изменению электронного окружения ядра. Одним из первых применений ядерного магнитного резонанса явилась проверка экспериментальным способом расчетных данных резонансных частот ядер в заданном магнитном поле. Однако было установлено, что полученные при этом результаты зависят от химического окружения ядер. Это явление имеет общий характер и называется химическим сдвигом . [c.258]

    Используя спектроскопические методы исследования, автор рассматривает вопросы идентификации спектров свободных радикалов, образующихся при механических воздействиях. Для анализа структуры полимеров и явлений, происходящих в них под нагрузкой, применяются хорошо зарекомендовавшие себя методы электронного парамагнитного и ядерного магнитного резонансов, современной голографии, а также электронная микроскопия, масс-спектрометрия и малоугловое рентгеновское рассеяние. Совокупное применение этих методов показало, что механическое разрушение полимеров происходит при совместном действии внешней силы и теплового движения. [c.5]


    СПЕКТРЫ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА [c.9]

    Качественная идентификация компонентов анализируемой смеси производится одним из следующих методов химическим микроанализом по характерным окраскам, появляющимся в результате взаимодействия анализируемого вещества с добавляемым реагентом, по спектрам поглощения в ультрафиолетовой или инфракрасной областях по спектрам флуоресценции по масс-спектрам или же по спектрам ядерного магнитного резонанса. [c.98]

    В последнее время в анализе органических соединений все большее значение приобретают физико-химические методы исследования спектроскопия в инфракрасной, видимой, ультрафиолетовой областях спектра, комбинационное рассеяние света, ядерный магнитный резонанс, масс-спектрометрия, хроматография и др. Эти методы используются для классификации, определения строения и идентификации органических соединений. [c.228]

    Радиочастотная область спектра в сочетании с магнитным полем используется в методе ядерного магнитного резонанса (ЯМР). ЯМР наблюдается у веществ, содержащих атомы, ядра которых обладают [c.228]

    Отсутствие абсолютной шкалы энергий делает трудны сравнение спектров ядерного магнитного резонанса, если I достигнуто соглашение об универсальном эталоне. Упомянуть выше тетраметилсилан удовлетворяет требованиям, которь можно предъявить к эталонному соединению. Сигнал ТМС -интенсивный синглет. По химическому сдвигу он отличается ( большинства других сигналов в спектрах протонного резонанс поэтому перекрывание сигнала ТМС с сигналами изучаемо] образца наблюдается редко. Он химически весьма инертен легко удаляется из образца после записи спектра. б-Шка в протонном магнитном резонансе основана на этом соединени Кроме того, применяемые сегодня спектрометры приспособлен для использования бумажных бланков, на которые уже нан сена шкала в миллионных долях. Поэтому калибровка методе боковых полос, о которой упоминалось выше, используется тол ко тогда, когда нужные области спектра детально записывают на узких развертках (например, I Гц/см). Обычно в этих сл чаях не удается записать эталонный сигнал и сигналы образ одновременно. (В следующей главе мы вернемся к таким эк периментам.) В некоторых случаях кроме б-шкалы еще испол зуется и т-шкала. Она отличается от б-шкалы только тем, ч в б-шкале сигнал ТМС принят за нуль отсчета, а в т-шкале е приписано значение 10 м. д. Таким образом, обе шкалы связ ны соотношением [c.34]

    Почему была переведена именно эта монография На русском языке имеется довольно много книг по ядерному магнитному резонансу. Однако все они (за исключением перевода монографии А. Бакса Двумерный ядерный магнитный резонанс в жидкости , который был выпущен в 1988 г. очень малым тиражом Сибирским отделением изд-ва Наука ) обсуждают методы одномерной спектроскопии. Между тем в последние годы стала весьма плодотворно развиваться двумерная и трехмерная ЯМР-спектроскопия. Такое расширение пространства, в котором изображается спектр, позволило принципиально повысить разрешение спектров ЯМР, однозначно соотносить линии сложных спектров, непосредственно устанавливать связи между спинами, рассмотреть процессы химического обмена, кросс-релаксацию и т. д. Монография известных швейцарских ученых Р. Эрнста, Дж. Боденхаузена и А. Вокауна является первой в мировой литературе, в которой с единых позиций излагаются основы и применения импульсных методов ЯМР, как одномерных, так и двумерных. [c.5]

    К Ф. м. а. относится масс-спектрометрия, к-рая позволяет определять в твердых и жидких в-вах почти все хим. элементы (пределы обнаружения до 10" —10 % по массе), а также является важным методом изотопного анализа и анализа орг. соединений. Ядерно-физ. методы, напр, активационный анализ, широка примен. при исследовании особо чистых в-в и геол. объектов. Активац. методы обеспечивают рекордно низкие пределы обнаружения элементов — до 10 г. Все шире использ. методы ядерного магнитного резонанса, ядерного квадрупольного резонанса, электронного парамагнитного резонанса, электронной Оже-спектро-скопии, оптико-акустической спектроскопии и др. [c.621]

    Еще более определенные сведения о взаимодействии неспаренного электрона с протонами бензольных колец ДФПГ были получены при исследовании ядерного магнитного резонанса. Поскольку взаимодействие электронного делокализованного спина с протонами разных типов будет отличаться не только по величине, но и по знаку, то каждый тип протонов будет находиться в различных локальных магнитных полях поэтому в спектре ЯМР появятся несколько отдельных линий, каждая из которых соответствует определенной группе протонов. [c.98]

    Для того чтобы продемонстрировать еще одно интересное явление, обсудим, каким должен быть спектр ядерного магнитного резонанса фосфора в пока еще не полученном соединении НРРг. Спектр на рис. 8-17, а представляет собой расщепление сигнала фосфора под влиянием двух атомов фтора, а спектр на рис. 8-17,6 должен был бы наблюдаться, если бы в спектре 8-17, а имело место дополнительное расщепление под действием ядра водорода. В случае большого расщепления сигнала в результате взаимодействия с протоном должен был бы появиться спектр, изображенный на рис, 8-18, а, тогда как спектр на [c.287]


    В центре дискуссии находился последний бастион защитников неклассических карбкатионов в ряду бицикло[2,2,1]геп-тана — соединение, которое в конце концов оказалось протони-рованным нортрицикленом, причем сначала допускалось протони-рование по типу 2 схемы (8.45). Новейшие исследования с помощью фотоэлектронной спектроскопии, ядерного магнитного резонанса, спектров комбинационного рассеяния дали доказательства протонирования по типу 3 схемы (8.45) и тем самым подтвердили неклассическую структуру 3 [99].5 Сомнительно, однако, можно ли сопоставлять условия спектроскопических исследований (в ЗЬГб/ЗОаСШ/ЗОаР, при —154 °С ) с условиями обычных химических превращений (см. также стр. 576). [c.574]

    Методом ядерного магнитного резонанса была определена длина последовательности синдиотактических блоков в нескольких образцах полиметилметакрилата, синтезированных в различных условиях [34]. Сходные данные (определение изотактических, синдиотактических и стереоблок-компонентов) были получены для других образцов полиметилметакрилата [35]. С помощью спектров ядерного магнитного резонанса были определены количества изотактических и синдиотактических структур в ангидриде поли-метакриловой кислоты [36]. Проведение пиролиза сополимеров при повышенных температурах и исследование продуктов пиролитического расщепления методами хроматографии может дать сведения относительно длины последовательности мономерных звеньев каждого типа [37]. Методом дифференциального термического анализа было показано, что сополимер пропилена со стиролом представляет собой смесь истинного сополимера и полистирола [38]. Теми же методами может быть также получена информация относительно длин последовательностей сомономеров [39]. [c.303]

    Улучиление характеристик приборов с помощью цифровых методов. Тот факт, что спектроскопист может пользоваться вычислительной машиной общего назначения, а также системой цифровой регистрации, имеет важное следствие горизонты лабораторий расширяются. Методика сглаживания применима к любым измерениям с шумами таким, как регистрация спектров ядерного магнитного резонанса, спектров флуоресценции или дисперсии оптического вращения, причем можно сделать все необходимые изменения для записи результатов в физически наиболее значимых единицах. [c.363]

    Спектроскопия ядерного магнитного резонанса является очень интересным и многообещающим методом, позволяющим получать данные о распределении электронной плотности в молекулах. В разд. И,В,2 коротко говорилось о влиянии индуктивного эффекта иитрогруппы и анизотропии диамагнитного экранирования па спектры протонного резонанса. В этом разделе мы рассмотрим в общих чертах влияние я-электронной структуры на химические сдвиги протонов, С. и в аро.матических питро- и питрозосоединениях. [c.43]

    Эффективный заряд определяют различными методами на основании изучения оптических спектров поглои1еиия, рентгеновских спектров, ядерного магнитного резонанса и др. [c.73]

    Кроме протонного магнитного резонанаса для химии [ефти большое значение имеет ядерный магнитный резонанс стабильного изотопа углерода Этот изотоп содержится в нефти в количестве около Ио. Частота ЯМР значительно отличается от частоты ЯМР протона, что позволяет получать четкие спектры ЯМР По этим спектрам можно судить о числе атомов углерода, зани- iaк щиx различное положение в молекуле углеводорода (это число ь простом случае равно числу пиков на спектрограмме), напри-мег. у циклогексана 1 пик, в случае н-гексана — 3 пика, в случае л[е2илциклопентана — 4 пика. Такие спектры позволяют провести идгнтификацию углеводородов. [c.42]

    С другой стороны, спектры ядерного магнитного резонанса протонов тяжёлых фракций коксования не содержат пиков, характерных для протонов, присоединенных непосредственно к атомам углерода двойной связи, несмотря на достаточно большие йодные числа и на относительно большой объем сульфируемой части образца. Таким образом, методика, сочетающая метод ЯМР и масс-спектрометрию для анализа количества олефиновых углеводородов в тяжёлых фракциях вторичного цроисхоадения не может быть создана ввиду отсутствия пиков олефиновых протонов в спектрах ЯМР этих цродуктов. [c.18]

    Спектры ЯМР. Ядерный магнитный резонанс (ЯМР) является одним из новых спектроскопических методов 155]. Вращающееся ядро ведет себя, как малый магнит, который ориентируется в маг-нитнсм голе. Эти ориентации соответствуют различным квантовым уровням энергии, между которыми могут быть переходы. Для магнитного поля в10 Гс абсорбционная частота находится в области радиочастот. Энергетические уровни выражаются магнитными квантовыми числами, и энергетические изменения аналогичны тем, ко-тсрье определяются в других видах спектроскопии. [c.52]

    Метод ИК-спектроскопии широко применяется для изучения г[р(щессов комплексообразования в растворах. Он основан на изменениях в ИК-спектрах в результате связывания вещества в комплекс с другим веществом. Например, полоса колебаний в ацетонитриле К а,,-с = 378 см">, А 1/2=10 см- , Емакс = 7,2-10 л/(моль-см)] заметно изменяет свои характеристики при ассоциации ацетонитрила с ионами магния максимум полосы смещается (vмalt( = = 405 см->), полоса становится шире (Д 1/2= 12 см ) и значительно интенсивнее [8макс= 1,21 10 л/(моль-см)]. Изучение ИК-спектров позволяет обнаружить центр в молекуле, ответственный за комплексообразование, так как наибольшие изменения претерпевает частота валентных колебаний той связи, один из, атомов которой участвует в процессе ассоциации. В методе ИК-спектроскопии время регистрации частицы меньше, чем, например, в методе ядерного магнитного резонанса. Поэтому две формы одной и той же молекулы (например, свободная или закомплексованная) регистрируются в виде отдельных полос, тогда как в спектре ЯМР будет одна уширенная полоса. [c.219]

    Ядерный магнитный резонанс веществ, находящихся в растворе, позволил исследовать параметры спектра и получил название ЯМР-сиектроскопии высокого разрешения. К середине 50-х годов-были разработаны теоретические принципы применения метода для самых разнообразных задач химии. В настоящее время быстро развивающаяся техника и методы эксперимента в ЯМР-спектроско-пни выявили необходимость использования импульсных методов, наряду со стационарными. Разработка серийных устройств, регистрирующих спектры высокого разрешения методом Фурье преобразования, дало возможность сократить время эксперимента и в ряде случаев получать более обширную информацию по сравнению с неимпульсными методиками. Метод ЯМР (как в импульсном, так и в стационарном варианте) позволяет определить константы равновесия, константы скоростей и термодинамические хара ктеристики процессов комнлексообразования, конформационных переходов и протонного обмена. [c.253]

    Среди спектроскопических методов для исследования химического состава нефти наибольшее значение получили анализы по спектрам комбинационного рассеяния света, по спектрам поглощения в инфракрасной и ультрафиолетовой области, масс-спек-троскопия, а в последнее время и спектроскопия ядерного магнитного резонанса (ЯМР-спектроокопия). [c.61]

    Представлены полученные на частоте 25.18 МГц с использованием методики вращения под магическим углом спектры высокого разрешения С ядерного магнитного резонанса ряда углеродных продуктов (графит, алмаз, стеклоуглерод, пироуглерод, фуллерены и фуллереновые сажи), а также промежуточных и конечных продуктов карбонизации полигетероариленов. Проведен анализ формы линии сигналов ЯМР. С помощью метода деконволюции получены спектральные характеристики основных структурных составляющих единиц исследуемых продуктов. С помощью программы расчета химических сдвигов проведено моделирование предполагаемых структурных единиц и расчет основных спектральных х )актеристик последних для ряда углеродных веществ, что позволяет высказать ряд предположений как о структуре (на уровне ансамбля атомов) углеродных продуктов, так и структурных последовательностях процесса карбонизации полимерньк веществ. [c.81]

    Из физико-химических (инструментальных) йй-бдов исследования, применяемых для установления молекулярной структуры органических веществ, наиболее часто используются оптическая спектроскопия (в ультрафиолетовой, видимой и инфракрасных областях спектра), спектроскопия ядерного магнитного резонанса (ЯМР), хроматография, метод дипольных моментов молекул, рентгеноструктурный анализ, молекулярная масс-спектроскопия и др. С помощью этих методов получают ценную информацию о взаимном расположении атомов в молекуле, их взаимовлиянии, внутримолекулярных расстояниях, поляризуемости связей, валентных углах и распределении электронной плотности и т. д. [c.123]


Библиография для Ядерный магнитный резонанс, спектры резонанс: [c.84]    [c.282]    [c.610]    [c.521]    [c.286]   
Смотреть страницы где упоминается термин Ядерный магнитный резонанс, спектры резонанс: [c.451]    [c.621]    [c.522]    [c.56]    [c.213]    [c.109]    [c.373]    [c.11]    [c.12]    [c.217]   
Физические методы в неорганической химии (1967) -- [ c.315 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс г ядерный магнитный

Спектр ядерные



© 2024 chem21.info Реклама на сайте