Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний для малых количеств

    Ионы многих металлов, в том числе железа (Ре), калия (К), кальция (Са) и магния (М ), необходимы для здоровья человека. Л,о 10% наших потребностей в этих элементах удовлетворяется за счет минералов, растворенных в питьевой воде. Другие металлы, называемые тяжелыми, образованы более массивными атомами, чем металлы, необходимые для здоровья. Они также могут растворяться в воде в виде ионов. Наиболее важные тяжелые металлы свинец (РЬ), ртуть (Hg) и кадмий (Сс1). Ионы этих элементов токсичны даже в малых количествах. Они связываются с белками, из которых состоит живой организм, и приводят к их неправильному функционированию. Отравление тяжелыми металлами может приводит), к очень серьезным последствиям. Сюда относятся повреждения нервной системы, почек, печени, слабоумие и даже смерть. Свинец, ртуть и кадмий особенно опасны, поскольку они широко распространены и могут попадать в пищу или воду. По мере накопления в организме эти элементы могут стать еще более опасными. [c.72]


    Алюминий — легкий металл (плотность 2,71-10 кг/м ), обладающий высокой коррозионной стойкостью в атмосфере и многих водных средах. Это сочетается в нем с хорошей электро- и теплопроводностью. Он очень электроотрицателен в ряду напряжений, но пассивируется при контакте о водой. Хотя растворенный в воде кислород повышает коррозионную стойкость алюминия, его присутствие не является обязательным для наступления пассивности. Следовательно, Фладе-потенциал алюминия отрицательнее потенциала водородного электрода. Считается, что пассивирующая пленка на алюминии состоит из оксида алюминия, толщину ее, если окисление происходило на воздухе, оценивают в 2— 10 нм (20—100 А). Коррозионное поведение алюминия зависит даже от малых количеств - примесей в металле, причем все эти примеси, за исключением магния, являются по отношению к алю- [c.340]

    Метод цементации (называемый также внутренним электролизом) заключается в восстановлении компонентов (обычно малых количеств) на металлах с достаточно отрицательными потенциалами (алюминий, цинк, магний) или на амальгамах электроотрицательных металлов. При цементации происходят одновременно два процесса катодный (выделение компонента) и анодный (растворение цементирующего металла). В качестве примера можно привести выделение микроэлементов из вод на металлах-цементаторах (А1, М 2п), обладающих простыми эмиссионными спектрами, поэтому последующее атомно-эмиссионное определение микроэлементов непосредственно в концентрате легко осуществляется. [c.254]

    Прибавка к магнию небольших количеств других металлов резко изменяет его механические свойства, сообщая сплаву значительную твердость, прочность и сопротивляемость коррозии. Особенно ценными свойствами обладают сплавы, называемые электронами. Они относятся к трем системам Mg—Л1—Ъп, Mg—Мп и М5—2п—2г. Наиболее широкое применение имеют сплавы системы Mg—Л1—Zп, содержащие от 3 до 10% Л1 и от 0,2 до 3% Zп. Достоинством магниевых сплавов является их малая плотность (около 1,8 г/см ). Они используются прежде всего в ракетной технике и в авиастроении, а также в авто-, мото-, приборостроении. Недостаток сплавов магния — их низкая стойкость против коррозии во влажной атмосфере и в воде, особенно морской. [c.633]

    Некоторые из этих минералов встречаются в крайне малых количествах. Минералы, образующие основную массу минеральных веществ, могут быть разделены Hi три группы алюмосиликаты, сульфиды (главным образом — железа) и карбонаты (кальция, магния и отчасти железа). [c.96]


    В состав растительных и животных организмов входят почти все элементы периодической системы Д. И. Менделеева. Содержание одних элементов в тканях организма составляет от нескольких процентов до сотых долей процента (по массе) — это макроэлементы водород, кислород, углерод, азот, фосфор, сера, кремний, калий, натрий, кальций, магний и железо. Другие элементы требуются растениям и животным в очень малых количествах, и содержание их колеблется от тысячных до стотысячных долей процента. Это микроэлементы — бор, марганец, медь, молибден, цинк, кобальт, иод и др. [c.161]

    Компоненты бинарной системы могут реагировать друг с другом, образуя твердое соединение, которое существует в равновесии с жидкостью в некотором диапазоне концентраций. Если образование соединения приводит к появлению максимума на диаграмме температура— состав , как показано на рис. 4.13 для системы цинк—магний, то говорят, что это соединение плавится конгруэнтно. Точка на оси составов, соответствующая максимуму температуры, представляет состав соединения. Если концентрация выражена в мольных процентах, то такие максимумы появляются при 50, 33, 25% и т. д., что соответствует целочисленным отношениям компонентов— 1 1, 1 2, 1 3 и т. д. Диаграмма на рис. 4.13 похожа на две помещенные рядом диаграммы уже рассмотренного типа, правда они несколько различаются. В данном случае кривая жидкости имеет горизонтальную касательную (т. е. нулевой наклон) в точке плавления конгруэнтно плавящегося соединения М 2пз, тогда как в точках плавления чистых компонентов наклон не равен нулю [17]. Это значит, что если в системе А—В существует конгруэнтно плавящееся соединение АВ, то добавки очень малых количеств А или В не будут понижать его точку плавления (или точку замерзания). [c.129]

    В очень малых количествах в нефтях присутствуют н другие элементы, главным образом металлы — ванадий, никель, железо, магний, хром, титан, кобальт, калий, кальций, натрий и др. Обнаружены также фосфор и кремний, ( одержание этих элементов выражается незначительными долями процента. В различных нефтепродуктах был найден германий в количестве 0,15—0,19 г/т. [c.20]

    Исследованиями установлено, что коэффициент бактерицидного поглощения особенно возрастает с увеличением цветности воды, содержания железа (И) и взвешенных веществ (даже в малых количествах, до 9 мг/л), в меньшей степени он изменяется от содержания в воде солей кальция и магния в концентрациях до 21 мг-экв/л. [c.164]

    A. М. Лукин в 1954 г. предложил реагент бериллон И для опре деления малых количеств Ве + в присутствии А1 + в щелочной среде Ве + дает голубую или фиолетовую окраску. 0,02%-ный водный раст вор бериллона П темно-красный. Чувствительность 0,04 мкг. Мешают магний, кальций, алюминий, железо, Со +, u +. Их маскируют комплексоном П1. Формула бериллона И  [c.194]

    Пример 1. Сотрудником лаборатории была разработана схема анализа редкого минерала уранинита с использованием комплексонометрического метода конечного определения основных компонентов- минерала урана, свинца, тория и суммы редкоземельных элементов. Схема, отработанная на искусственных смесях, учитывала возможность присутствия в уранините малых количеств кальция и магния и включала этап их совместного выделения и последующего раздельного. комплексонометрического определения. Данные предварительного эмиссионного спектрального анализа естественного образца уранинита, представленного для апробирования разработанной схемы, подтверждали наличие в его составе высоких содержаний урана, свинца, тория и редкоземельных элементов, а также небольших (0,3—0,8%) количеств магния, железа и алюминия. Кальций методом эмиссионного спектрального анализа в образце минерала обнаружен не был. Однако при неоднократных анализах по разработанной схеме он уверенно обнаруживался, хотя и в небольших количествах (0,2—0,4 %). Поскольку чувствительность метода эмиссионного спектрального определения кальция несомненно выше, чем комплексонометрического, следовало признать, что разработанная схема содержала систематическую погрешность привнесения кальция извне на каких-либо этапах анализа. [c.58]

    В нефти В очень малых количествах присутствуют и другие элементы, главным образом металлы ванадий, хром, никель, железо, кобальт, магний, титан, натрий, кальций, германий, а также фосфор и кремний. При определении элементарного состава нефти эти элементы концентрируются в остатке, называемом золой. [c.18]

    При малом количестве доставленной пробы ряд веществ может быть определен последовательно, что, естественно, усложняет и увеличивает длительность анализа. Например, общую концентрацию кремниевой кислоты, сумму железа и алюминия, кальция я. магния можно определять последовательно, пользуясь сухим и минеральным остатком. Фильтрат после отделения взвешенных веществ можно использовать для определения сульфатов или сухого остатка. Пробу после определения щелочности можно применять для определения хлоридов или сульфатов в зависимости от того, какой кислотой — серной или соляной — выполнялось титрование. При исследовании отложений можно не опасаться существенного изменения их состава, если проба защищена от доступа влаги и агрессивных газов и паров (H I, SO2, HjS и т. д.). Наиболее ответственной операцией является при этом измельчение пробы. Оно должно быть выполнено быстро и в то же время достаточно тщательно. Материалы, растворимые в воде, например многие отложения из проточной части турбины, наружные отложения с низко температурных поверхностей нагрева парогенераторов, отапливаемых мазутом, не требуется при измельчении доводить до состояния пудры. Процесс измельчения в данном случае преследует цель получения средней пробы. В то же время эти материалы обычно гигроскопичны, часто содержат вещества, поглощающие углекислоту, поэтому длительное их пребывание на воздухе нежелательно. [c.410]


    Небольшие количества алюминия просто отделяются от значительных количеств магния осаждением из уксуснокислого раствора. При отделении больших количеств алюминия от малых количеств магния сначала выделяют окси хи пол и пат магния из раствора едкого натра, содержащего тартраты, а затем в фильтрате определяют алюминий в виде оксихинолината [560]. [c.37]

    Простой способ синтеза дипикриламина [294], возможность обнаружения малых количеств калия и его отделения от натрия, магния, кальция и других катионов способствовали быстрому внедрению этого реагента в практику многих аналитических лабораторий. Дипикриламин применяется для обнаружения калия в минералах [296], крови [296], для гистохимических исследований [132, 575, 924]. Об этой реакции см. также [209, 545, 730, 1082, 1104, 1259, 1713, 2262]. [c.22]

    Несколько капель анализируемого раствора помещают в тигель, прибавляют по нескольку капель растворов NH OH, хлорида магния и перекиси водорода (для окисления арсенита до арсената). Образовавшийся осадок промывают декантацией, высушивают и прокаливают. К прокаленному остатку в тигле прибавляют несколько капель насыщенного раствора хлорида оло-ва(П) в конц. НС1 и слегка нагревают. В присутствии малых количеств мышьяка (1—2 мкг) раствор принимает бурую окраску при больших содержаниях выпадает черный осадок элементного мышьяка, [c.29]

    Для устранения отрицательной ошибки при фотометрическом титровании малых количеств кальция в присутствии больших количеств магния с индикатором мурексидом рекомендуют точно контролировать количество прибавленной щелочи по малахитово- [c.47]

    Титрование кальция с мурексидом в присутствии значительных количеств магния ухудшает фиксирование точки эквивалентности и вызывает заниженные результаты [119, 473, 612, 1452]. При комплексонометрическом определении малых количеств кальция в присутствии 12—110-кратных количеств магния с индикатором мурексидом получаются результаты, заниженные в среднем на 23% [1191. [c.51]

    Магний очень медленно разлагает воду с образованием окиси Mg 0, м.ало растворимой в воде и переходящей в гидроокись магния малое количество последней, находящейся в растворе, настолько сильно ионизировано, что раствор приобретает слабощелочную реакцию. Магний горит на воздухе ослепительно белы.м светом с обра. ование.м окиси. При 300° металл соединяется с азотом, образуя нптрид мапния МЕГпХ г. который легко разлагается влдой с выделением гидроокиси. магния и аммиака  [c.300]

    В колонку загружают около 40 г смолы (размер зерна 1—2 мм) в Н-форме. После растворения пробы в HaFa и выпаривания с HaSOi до появления белого дыма (для удаления фтора) аликвотную часть раствора нейтрализуют 25%-ным раствором аммиака до появления неисчезающей мути. Затем прибавляют сухую щавелевую кислоту (1—1,5г)до образования прозрачного раствора. Раствор пропускают через колонку со скоростью 5 лл/лим. Адсорбированный магний смывают 150 мл 20%-ного раствора соляной кислоты. В полученном растворе определяют магний титриметрическим или фотометрическим методами -зависимости-от количества). Ti, А1, Fe и Са не мешают отделению магния малые количества кальция остаются с магнием, но не мешают его определению. [c.100]

    Многие лантаноиды и нх соединения иашлн применение в различных областях науки и техники. Они применяются в производстве стали, чугуна и сплавов цветных металлов. При атом используется главным образом мишметалл — сплав лантаноидов с преобладающим содержанием церия и лантана. Добавка малых количеств редкоземельных металлов повышает качество нержавеющих, быстрорежущих, жаропрочных сталей и чугуна. При введении 0,35% мишметалла в нихром срок его службы при 1000 С возрастает в 10 раз. Добавка лантаноидов к сплавам алюминия и магния увеличивает их прочность при высоких температурах. [c.643]

    При язве желудка используют основания, выделяющие лишь малое количество ОН"(води.), такие, как А1(0Н)з и Mg(OHЬ (гидроксиды алюминия и магния), а также СаСОз (карбонат кальция). Почему это свойство так важно  [c.449]

    Катионы. Катионами, которые наиболее часто присутствуют в воде и на задержание которых обычно рассчитывают катионитовые фильФры, являются кальций, магний и натрий. Остальные катионы, которые мргут ахрисутствовать в природных водах (железо, марганец, калий, аммоний), как правило, содержатся в весьма малых количествах по сравнению с содержанием кальция, магния и натрия. Поэтому при расчете катионитовых фильтров содержание иных катионов, кроме кальция, магния и натрия, как правило, не учитывается. [c.27]

    По методу завода Сименс-Шуккерта малое количество воды определяют по реакции ее с металлическим натрием и по измерению количества выделившегося водорода. По Рейнеру [8] воду в нелетучих маслах определяют, отгоняя ее из нагретого масла током инертного газа и улавливая ее фосфорным ангидридом. Эртель, а также Пфлуг предложили простой и очень точный метод определения малых количеств воды в маслах, основанный на измерении повышения температуры при обработке влажного масла обезвоженным сульфатом магния при строго определенных условиях. Повышение температуры, помноженное на 0,5, прямо дает содержание воды в процентах. Однако этот метод еще нуждается в доработке. [c.18]

    Многие лантаноиды и их соединения нашли применение в различных областях науки и техники. Они применяются в производстве стали, чугуна и сплавов цветных металлов. При этом используется главным образом мишметалл — сплав лантаноидов с преобладающим содержанием церия и лантана. Добавка малых количеств редкоземельных металлов повышает качество нержавеющих, быстрорежущих, жаропрочных сталей и чугуна. При введении 0,35% мишметал-ла в нихром, из которого делают электроспирали электропечей и др. нагревательных приборов, срок его службы при 1000 °С возрастает в 10 раз. Добавка лантаноидов к сплавам алюминия и магния и других металлов увеличивает их прочность при высоких температурах. Европий является единственной основой для получения красного люминофора для цветных кинескопов. [c.501]

    Многие лантаноиды и их соединения применяются в различных областях науки и техники. Они используются в виде мишметалла (сплава лантаноидов с преобладающим содержанием церия и лантана) в металлургии при выплавке стали, чугуна и сплавов цветных металлов. Добавление малых количеств мишметалла повышает качество нержавеющих, быстрорежущих, жаропрочных сталей и чугуна. При введении 0,35% мишметалла в нихром срок его службы при 1000°С возрастает в 10 раз. Заметно увеличивается прочность при высоких температурах сплавов алюминия и магния при добавлении лантаноидов. Основным потребителем лантаноидов является стекольная промышленность. Цериевое стекло устойчиво по отношению к радиоактивному излучению (не тускнеет) и применяется в атомной технике. Оксиды лантаноидов входят в состав оптических стекол. Некоторые оксиды придают стеклу различную окраску. Лантаноиды и их оксиды используются как катализаторы при химических синтезах, а также в качестве материалов в радио- и электротехнике. [c.323]

    Для отделения скандия от кальция и магния можно использовать не только различие в pH осаждения их гидроокисей (табл. 7) [13]. но и выщелачивание гидроокисей 20%-ным раствором (МН гСОз, что дает возможность извлекать в раствор и эффективно отделять 8с как от больших, так и от малых количеств примеси Са и Mg [6]. [c.19]

    Образование твердых растворов (смешанных кристаллов) позволяет осадить те ионы, которые в обычных условиях не осаждаются. Например, сульфаты стронция и свинца образуют смешанные кристаллы, которые можно выделить, добавляя к раствору с малым содержанием РЬ -+ раствор соли стронция и затем избыток сульфата. Весь РЬ выделится с осадком из раствора вместе со ЗгЗО . Свинец отделяют, превратив сульфаты в карбонаты и растворив последние в кислоте. Малое количество мышьяка (V) в виде ионов А504 осаждают вместе с фосфатом магния и аммония, добавляя в раствор ионы РО , МН , М - . Арсенат-ион образует изоморфный твердый раствор с фосфатом, замещая его частично в кристаллической решетке. [c.80]

    Очистка растворителя. Поскольку коммерческий метанол весьма высокого качества, его используют без какой-либо предварительной обработки. Возможными примесями могут быть ацетон, метилаль, метилацетат, формальдегид, этанол, ацетальдегид, эфир и вода. Воду можно удалить нагреванием с обратным холодильником вместе с эквивалентным количеством металлического магния. Осушка инициируется добавкой малых количеств иода (0,5 г J2 на 5 г Mg). При выдерживании раствора реакция возникает спонтанно и протекает бурно и экзотермически [4]. Анализ воды в метаноле удобно проводить газовым хроматографическим методом. Хроматографирование на колонке длиной 1,8 м, заполненной Рогарак Q , при 100 °С дает хорошее разделение воды от воздуха, СО2 и метанола. [c.38]

    Процесс химического кобальтирования более чувствителен к примесям, чем процесс химического никелирования малые количества ионов роданида и циана (концентрация О 01 г/л) полностью прекра щают процесс восстановления металла на поверхности В присутствии солей кадмия скорость осаждения кобальта замедляется Некоторое снижение скорости процесса наблюдалось при введении в раствор солей хлористого цинка магния или железа (концентрация 1 г/л) При наличии ионов палладия в растворе происходит сильное раз ложение гипофосфита сопровождающееся выделением метал та в виде порошка и непроизводительным расходом восстановителя В присутствии сернокислой меди (О 1 г/л) н хлористого аммония (1 О г/л) вид покрытия не меняется, и скорость восстановления кобвльта не изменяется [c.56]

    Перборат кальция образуется прн взаимодействии пербората иатрия в водном растворе с солями кальция. Эта соль очек легко разлагается. Одиако малым количеством воды, наприме только кристаллизационной, можно выделить твердый пербора кальция, более стойкий по отношению к воде. Можно исходит также из перекиси водорода и щелочного бората илй перек натрия, борной кислоты и минеральных кислот. Уменьши гидролиз можно пр 1мекением настолько копцентриро ванных рас творов перекиси водорода, чтобы содержание НгО в ких даже после добавления растворяющей воды было бы не менее 10%. Тот же путь, что и для пербората кальция, следует использоватЙ и для перборатов магния и данка. [c.398]

    Оксибензол-(1-азо-Г)-2 -окси-3 -(2" 4"-диметнлкарбокси-анилндо)-нафталин предложен для колорнметрического определения малых количеств магния [1, 2] и как индикатор для комплексометрического титрования [3]. Синтез реактива в литературе не описан. [c.106]

    Тонкослойная хроматография является эффективным методом для разделения малых количеств веществ на небольшом слое адсорбента и за короткое время. Хроматографирование можно проводить в закрепленном и незакрепленном слое адсорбента. В качестве адсорбента для приготовления закрепленных слоев применяют оксиды магния, алюминия, кальция, карбонат магния, силикагель в смеси со связующими компонентами, такими, как сульфат кальция, рисовый крахмал и вода. Для приготовления хроматографической пластинки с закрепленным слоем адсорбента на стеклянную пластинку (9Х12 см, 13X7 см) наносят смесь адсорбента со связующим веществом (5% от массы адсорбента) и водой в виде кашицы Специальным валиком (см ниже) смесь равномерно раскатывают в слой толщиной 2 мм Затем пластинку высушивают при 110—120°С. После высушивания пластинки на ней не должно быть трещин [c.50]

    Особенно интенсивная флуоресценция наблюдается у силикатов магния, кальция, бериллия, бария, фосфатов кальция, бария и особенно галогенидов щелочпых металлов, активированных небольшими количествами солей таллия. Интенсивность флуоресценции зависит от содержания таллия в кристаллах [21]. Свечение в этих случаях объясняется вхождением таллия в кристаллическую рещетку галогенидов с образованием смешанных кристаллов и, возможно, комплексных ионов [134]. Образование кристаллофосфоров удачно используется для обнаружения малых количеств таллия. При введении соли таллия в раствор галогенида щелочного металла и высушивании получаются кристаллофосфоры, флуоресцирующие при облучении ультрафиолетовыми лучами [210] [c.32]

    Основные трудности при определении малых количеств мышьяка в сере связаны с методами его выделения. Из всех описанных способов разложения серы при определении мышьяка (сплавление с пиросульфатом, разложение смесью азотной и серной кислот или раствором брома в СС14, экстрагированием раствором хлорида магния, нагретого до температуры плавления серы [233]) [c.217]

    Из перечисленных органических осадителей хорошие результаты дает фенилтиогидантоиновая кислота, которая позволяет отделять кобальт от мышьяка, урана, ванадия, титана, воль-ф)рама, молибдена, цинка, марганца, алюминия, магния, кальция. Из экстракционных методов разделения хорошо зареко.мен-довал себя дитизоновый. метод, особенно для. малых количеств кобальта. Экстракция дитизоном в кислом растворе позволяет отделить медь от кобальта наоборот, в слабощелочных цитратных растворах экстрагируется дитизонат кобальта, а железо, титан, хром, ванадий и другие металлы, не образующие дитизонатов, остаются в водном растворе. Экстракцию двойных и тройных роданидных ко.мплексов кобальта. можно также с успехом использовать для отделения кобальта от большинства других элементов, в том числе от никеля, железа и меди, если последние два элемента за.маскировать. [c.61]

    Для определения малых количеств магния и кальция с эриохром черным Т кальций отделяют соосаждением со SrS04 в водно-этанольной среде (pH 3,2—4,0) [1079]. [c.40]

    Значительно уменьшить соосаждение кальция позволяет отделение магния в виде гидроокиси в присутствии некоторого количества комплексона П1 для маскирования кальция. Использование этого приема при титровании малых количеств кальция в присутствии больших количеств магния с мурексидом дает возможность уменьшить ошибку определения от 23 до 0,3% [119]. Наиболее распространенным вариантом описанного приема является обратное титрование избытка комплексона П1 хлоридом кальция [747, 924]. Использование такого приема отделения магния в сочетании с вытеснением кальция из его комплексоната избытком раствора свинца экстракцие кальция экстрагентом АТ позволяет определять тысячные доли процента кальция в солях магния с ошибками < 15% [161]. [c.52]

    Известняки и уголь, содержащие значительное количество соединений серы, фосфора, мышьяка, магния, кремния и алюминия, не пригодны для производсгва карбида, как в том случае, когда последний должен быть употреблен для получения ацетилена, так и тогда, когда он идет в производство цианамида кальция. Если карбид содержит соединения серы, фосфора, кремния и мышьяка, то при разложении его водой вместе с ацетиленом выделяются водородистые соединения этих элементов. Водородистые соединения фосфора и кремния—легко разлагающиеся вещества они воспламеняются сами собой при обыкновенной комнатной температуре. Ясно, что их присутствие в ацетилене может быть причиной взрыва последнего. Кроме того, ацетилен, загрязненный водородистыми соединениями фосфора, мышьяка и серы, оказывает весьма вредное действие на организм человека. Мышьяковистый водород является сграшным ядом, который даже при вдыхании в весьма малых количествах причиняет смерть. Менее опасны, но все же очень вредны, фосфористый водород и сернистый водород. Их присутствие в аммиаке, выделенном из - цианамида кальция, крайне нежелательно, так как при окислении аммиака в азотную кислоту, они способны отравлять катализаторы, вследствие чего, процесс окисления замедляется и может остановиться вовсе. [c.88]


Смотреть страницы где упоминается термин Магний для малых количеств: [c.30]    [c.505]    [c.218]    [c.169]    [c.91]    [c.179]    [c.75]    [c.321]    [c.437]    [c.647]    [c.97]   
Химико-технические методы исследования Том 1 (0) -- [ c.195 ]




ПОИСК







© 2025 chem21.info Реклама на сайте