Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двуокись серы применение

    Впервые смешанный растворитель ЗОг+бензол был применен для рафинирования смазочных масел вместо серной кислоты. Этот способ носит название процесса Эделеану [57—611. Прототипом для переработки масел этим методом послужила экстракция нефти, примененная еще в 1911 г. Главным растворителем является жидкая двуокись серы количество добавляемого бензола колеблется в пределах 15—25% и тем выше, чем выше вязкость масла. Двуокись [c.395]


    Опыты с применением концентрированных кислот, щелочей, ядовитых веществ или с резким раздражающим запахом (хлор, бром, двуокись серы, сероводород, оксиды азота и др.) следует выполнять в вытяжном шкафу с включенной вентиляцией. [c.26]

    Двуокись серы была первым растворителем, примененным в промыщленности более 30 лет назад, для экстрагирования керосина и других легких дестиллатов. При обработке тяжелых дестиллатов избирательность этого растворителя остается также весьма высокой, но растворяющая способность очень быстро снижается по мере утяжеления очищаемых нефтепродуктов. [c.313]

    Серная кислота. Для поглощения влаги из газов применяют концентрированную серную кислоту =1,84). Серная кислота даже реактивной квалификации содержит растворенные газы двуокись серы, воздух, которые могут загрязнять осушаемый газ. Поэтому перед применением серную кислоту предварительно нагревают до появления дыма или, еще лучше, пропускают через нее поток высушенного воздуха для удаления ЗОг и затем нагревают для удаления воздуха. [c.47]

    В этом обзоре доноры атомов водорода, например вода, метанол и формамид, рассматриваются как протонные растворители растворители с константами диэлектрической проницаемости более 15, которые, хотя и содержат атомы водорода, но не способны выступать в роли доноров лабильных атомов водорода с образованием сильных водородных связей, рассматриваются как сильно полярные апротонные соединения. К числу таких обычных полярных апротонных растворителей относятся диметилформамид, диметилацетамид, Ы-метиЛпирролидон-2, диметилсульфоксид, тетраметиленсульфон (сульфолан), диметилсульфон, ацетон, нитрометан, ацетонитрил, нитробензол, двуокись серы, пропиленкарбонат. В обзоре рассматриваются преимущественно ДМФА, ДМАА и ДМСО, так как эти растворители доступны и широко применяются [2,4]. Но следует помнить, что существует много других полярных апротонных растворителей, применение которых в отдельных частных случаях может быть предпочтительным. Некоторые физические константы обычных полярных апротонных растворителей приведены в табл. 1. [c.7]

    Выделение сорбцией растворами играет важную роль в методах, при выполнении которых образуется сероводород или двуокись серы. Методы с применением твердых сорбентов, изменяющих окраску, рассмотрены в разделе Различные методы . [c.311]

    В США было испытано много различных химических реагентов для коагуляции и добавок для увеличения концентрацип обезвоживаемого сброженного осадка хлорное железо, хлор-гидрат алюминия, известь, серная кислота, двуокись серы, сернокислое железо, железный купорос, квасцы, пепел, торф, мусор, глина, зола, бумажная пульпа и т. п., а также синтетические флокулянты. Наибольшее распространение нашли хлорное железо в сочетании с известью, применение которых дало лучшие результаты. Расход хлорного железа для коагуляции сброженных осадков составляет от 8 до 15% веса сухого вещества осадка. При совместной коагуляции осадков хлорным железом и известью (дозой, повышающей pH > 9) расход хлорного железа значительно снижается и составляет 2—8% веса сухого вещества осадка. [c.135]


    Метод основан на сжигании стирола в растворе метилового спирта с применением специальной лампы в присутствии кислорода воздуха. Образующуюся двуокись серы после сжигания сернистых соединений поглощают раствором углекислого натрия. [c.298]

    Синтез фреона удалось значительно упростить применением вместо дорогой и трудно,регенерируемой фтористой сурьмы более дешевой безводной плавиковой кислоты. Плавиковую кислоту в виде 100%-ного продукта получают, пропуская фтористый водород (выделяющийся под действием серной кислоты на плавиковый щпат и содержащий 5% воды, некоторое количество четыреххлористого кремния и двуокиси серы) в холодную серную кислоту. При этом фтористый водород и вода абсорбируются, в то время как двуокись серы и четыреххлористый кремний не поглощаются. Из приблизительно 50%-ного раствора фтористого водорода в серной кислоте слабым нагревом отгоняют 100%-ную плавиковую кислоту, ожижаемую (т. кип. 19,54°) в конденсаторе [170]. [c.211]

    Благодаря своим особым характеристикам один растворитель имеет преимущества перед другим для каждого конкретного случая применения. Так, вследствие низкой растворяющей способности и высокой упругости паров двуокись серы [81] применяется только в ограниченных пределах для очистки смазочных масел, однако ее растворяющая способность является вполне достаточной для низкокинящих фракций и она может быть использована при (—29) (—35)° С для извлечения ароматики из бензиновой фракции, а при —7° С — для очистки керосиновых дистиллятов. В случае ее ограниченного применения для очистки смазочных масел температура поддерживается в пределах от 10 до 24° С. [c.281]

    В методе, основанном на сжигании, сера переводится в двуокись серы (сернистый ангидрид), которая затем окисляется до серного ангидрида посредством продувки через раствор перекиси водорода. Содержание серной кислоты определяется одним из трех методов ацидометрическим титрованием стандартным раствором едкого натра гравиметрическим осаждением в виде сульфата бария или нефелометрическим с применением спектрофотометра. [c.89]

    Примером разделения систем этого типа служит экстрагирование растворителями, впервые примененное в нефтеперерабатывающей промышленности для очистки керосина и смазочных масел от ароматических углеводородов. Этот метод можно использовать с успехом и в случае низкомолекулярных углеводородов, присутствующих в бензине, поскольку его применение почти не зависит от молекулярного веса и температуры кипения обрабатываемых смесей. Однако, чтобы в последнем случае образовались две жидкие фазы, надо работать при низкой температуре. Из применяемых растворителей следует назвать жидкую двуокись серы, нитробензол, хлорекс ( , б-ди-хлордиэтиловый эфир), фурфурол, фенол, а также жидкий пропан, В результате получают экстракт (раствор извлекаемых углеводородов в данном растворителе) и раффинат (углеводороды, нерастворимые в данном растворителе) в первом продукте отношение углерода к водороду высокое, во втором — низкое. Иначе говоря, с помощью этого метода можно экстрагировать ароматические углеводороды из их смесей с парафинами и нафтенами. Экстракция растворителями является сейчас распространенным техническим приемом. [c.38]

    Как видио из приведенных показателей, применение сжиженного технического сернистого ангидрида в качестве ивходяого материала для получения газообразной двуокиси серы при соответствующей очистке может обеспечить полученне чистого газа. Для этой цели рекомендуется использовать баллон, из которого уже отбирали газ чем больше газа отобрано предварительно из баллона, тем меньше трудно конденсируемых примесей содержит испаряемый газ. Газообразную двуокись серы промывают онцентрированной серной кислотой, высушивают над пятиокисью фосфора и конденсируют. [c.160]

    Во втором случае имеется возможность одновременного определения углерода. Содержание серы можно вычислить по площадям пиков сероводорода или двуокиси при использовании соответствующих калибровочных кривых или калибровочных факторов. При применении обоих методов необходимо, однако, выделение продуктов гидрирования или окисления при помощи охлаждаемых ловушек. Определение сероводорода производят на колонках с молекулярными ситами, причем получают результаты, хорошо совпадающие с результатами метода ASTM . Возникающие при гидрировании низшие углеводороды должны быть выделены при помощи включенной перед хроматографической колонкой охлаждаемой колонки с молекулярными сптами. При окислении, кроме двуокиси серы, возникают вода и двуокись углерода. Воду удаляют обработкой сульфатом кальция, а для разделения двуокиси углерода, кислорода и двуокиси серы хорошо подходит колонка, содержащая динонилфталат на хромосорбе. Метод окисления позволяет определять серу в сульфоксидах, сульфонах, сульфидах и дисульфидах но сульфаты не переводятся количественно в двуокись серы. Азот и галогены не оказывают в.лияния на результаты определения. Продолжительность анализа составляет только 20 мин. [c.253]


    Применение цеолитов тина А и X, наполненных аммиаком или летучими аминами, позволяет интенсифицировать процесс вулканизации без опасности пре кде-временного структуирования на предварительных стадиях. Применение цеолитов, наполненных такими газообразными и летучими соединениями как сероводород, двуокись серы, органические перекиси позволяет производить вулканизацию каучуков в отсутствие элементарной серы. Резины, полученные с использованием наполненных цеолитов, отличаются высокими физико-механическими свойствами. [c.427]

    После этого пускают в ход вакуум-насос, зажигают лампочку пламенем, не содержащим соединений серы (применение спичек запрещается), и регулируют длину фитиля, высоту пламени и скорость просасывания воздуха с таким расчетом, чтобы сгорание продукта было полным и чтобы вся двуокись серы успевала поглощаться раствором карбонага натрия. Испытание считается законченным, когда сгорит весь испытуемый продукт. После сжигания продукта в лампочку наливают 1—2 мл бессернистого бензина и сжигают полностью. Затем лампочки гасят, накрывают их колпачками и через 3—5 мин выключают насос. Прибор разбирают, брызгоуловители, ламповые стекла и верхние части [c.58]

    Гидрогенизация сероуглерода крекинг сероуглерода может происходить с образованием сернистого никеля и углерода при 350° образование углерода устраняется применением избытка водорода сероуглерод сильно адсорбируется на N 382, но конверсия происходит медленно в тех же условиях на N13 адсорбированное количество равно небольшой величине при низкой температуре адсорбция сероуглерода на N 8 значительна и обра- тима (вандерваальсовская адсорбция) двуокись серы не адсорбируется на N 8 (выше 300°, активиро- ванная адсорбция) на N 382 активированная адсорбция происходит приблизительно при 200° сероуглерод адсорбируется, но немного при всех температурах опытов [c.340]

    Таким же образом заполняют испытуемым продуктом вторую лампочку, в третью же наливают этиловый спирт. Затем колбу Бунзена соединяют при помощи вакуумной трубки с водоструйным насосом, и в горло колбы через резиновую трубку вставляют отросток трехотводного стеклянного паука. Конец паука соединяют при помощи вакуумной трубки с брызгоуловителями, последние с адсорберами, установленными на деревянных подставках, а адсорберы — с ламповыми стеклами. На резиновые трубки между колбой Бунзена и насосом и между брызгоуловителями и пауком надевают винтовые зажимы. После этого пускают в ход вакуум-насос, зажигают лампочку пламенем, не содержащим соединений серы (применение спичек запрещается), и регулируют длину фитиля, высоту пламени и скорость просасывания воздуха с таким расчетом, чтобы сгорание продукта было полным и чтобы вся двуокись серы успевала поглощаться раствором карбоната натрия. Испытание считается законченным, когда сгорит весь испытуемый продукт. После сжигания продукта в лампочку наливают 1—2 мл бессериистого бензина и сжигают полностью. Затем лампочки гасят, накрывают их колпачками и через 3—5 мин выключают насос. Прибор разбирают, брызгоуловителя, ламповые стекла и верхние части адсорберов тщательно промывают струей дистиллированной воды из промывалки, промывные воды собирают в соответствующий адсорбер. [c.179]

    Обработка поверхностных вод включает следующие стадии предварительное хлорирование с дозами, соответствующими точке перегиба, последующее хлорирование для установления должного уровня остаточного хлора на выходе из очистной установки и повторное хлорирование в выбранных точках распределительной системы для сохранения требуемого уровня свободного остаточного хлора. Введение больших доз хлора может привести к чрезмерно высоким концентрациям остаточного хлора, что сделает воду неприятной для питья или нежелательной для промышленного применения. Для уменьшения содержания остаточного хлора в воде может быть проведено ее дехлорирование, заключающееся в добавлении восстанавливающего агента, часто называемого дехлор. На городских очистных сооружениях для дехлорирования наиболее широко используется двуокись серы в меньшей степени для этой цели применяется бисульфит натрия. Некоторое количество остаточного хлора может быть удалено путем аэрации (с помощью погрул<енных или поверхностных аэраторов). [c.193]

    И. Юранек и Б. Амброва [44] разработали газохроматографическую методику определения углерода и серы в техническом железе и его сплавах. Анализируемую пробу сжигали в токе кислорода, который одновременно использовали как газ-носитель. Образовавшиеся при сожжении газы (двуокись и окись углерода и двуокись серы) хроматографически разделяли на колонке с силикагелем. Содержание газов записывали при помощи фотоколори-метрической ячейки. Такой способ позволяет определить содержание углерода в стали на 10 % при навеске 1 г. Возможно применение и меньших навесок. [c.160]

    Было найдено, что при исследованиях методом газовой хроматографии анализируемые компоненты удобно разделить на две группы первая включает кислород, закись азота, двуокись углерода и вторая — эфир, галотан, хлороформ, трихлорэтилен. Предварительная работа проводилась с адсорбционными колонками, однако скоро стало очевидным, что в связи с большей воспроизводимостью данных и более короткими временами удерживания желательно применение распределительных колонок. Оказалось, что лучшей колонкой для разделения смеси кислорода, закиси азота и двуокиси углерода является колонка длиной 6,1 ж и внутренним диаметром 6,3 мм, заполненная огнеупорным кирпичом (силосел, фракция 52—60 меш, свободная от тонких частиц) последний пропитывается диметил сульфоксидом в количестве 20% по весу. Некоторые газы — двуокись серы, аммиак, ацетилен, двуокись углерода, закись азота — хорошо растворяются в диметилсульфоксиде, тогда как для большинства газов, включая кислород и азот, растворимость в нем ничтожна. Колонка работает при комнатной температуре (20°), объем пробы может составлять 3 мл. Обычно в качестве газа-носителя используется водород, скорость потока которого равна 30 мл/мин. Если аппаратура применяется во время операции, то, чтобы устранить опасность взрыва, водород заменяют гелием. [c.442]

    Внимание При реакции образуются хлористый водород ли6о< двуокись серы в смеси с хлористым водородом. Работать под тягой А. Применение треххлористого фосфора. Смешивают в круглодонной колбе 1 моль карбоновой] кислоты с 0,4 моля треххлористого фосфора, несколько раз встряхивают и оставляют на ночь,. [c.409]

    В Германии применяется следующий метод очистки кислоты. Сначала разлагают перекнсные соединения путем нагревания с наром до 105° с добавкой сернокислого железа (П1). Кислоту после выдерживания в ряде керамических баков в течение 1,5—3 час. охлаждают до 60—80° в танталовом холодилышке и разбавляют до 10 н. концентрации для осаждения железа. Для удаления следов оставшегося активного кислорода вводят двуокись серы, после чего кислоту обрабатывают периодически железистосинеродистьш калием при перемешивании воздухом с целью осаждения остаточного железа в виде берлинской лазури. Для этой цели применяют гуммированные стальные баки с обкладкой из керамических плиток. Осадок фильтруют без применения давления через керамические фильтрующие трубки и подвергают обработке для извлечения примерно 30% платины, потерянной с анодов. Кислотный фильтрат концентрируют до 18 н. концентрации в керамической реторте, нагреваемой змеевиком из золотого сплава (с 30% серебра) при остаточном давлении 10 мм рт. ст. (серебро добавляется к золоту для повышения его твердости). После концентрирования фильтрат содержит железо в количестве 5—10 мг/л. [c.124]

    Перекись водорода в основном применяется в качестве отбеливающего вещества. От перекиси водорода требуется, чтобы она разлагала или обесцвечивала окрашенные вещества или превращала их в форму, растворимую в воде или в отбеливающем веществе. Для отбелки можно использовать как восстановитель, например двуокись серы, гидросульфит или тиосульфат, так (и притом чаще) и окислитель, нанример перекисное соединение, хлор или кислородсодержащие хлоропроизводные, например гипохлориты, хлорит натрия и двуокись хлора. В небольшом количестве для отбелки применяются также бихро-маты, озон и перманганаты. В последнем случае образующуюся двуокись марганца удаляют путем последующей обработки перекисью водорода, уксус-1ЮН или щавелевой кислотой. Из других перекисных соединений, которыетакже используются в качестве отбеливающих веществ, следует указать на перекись натрия, которая может заменить перекись водорода при отбелке древесной целлюлозы и для удаления краски с бумажной макулатуры или же применяться в сочетании с нею. В прачечных производственного типа, если требуется отбеливающее вещество слабого действия, или в тех случаях, когда отбелка производится случайно или в (ебольших масштабах, иногда применяют пероксоборат натрия. За последние несколько лет быстро возрастает применение пероксобората в виде сухого отбеливающего вещества в домовых прачечных. Водный раствор пероксобората в действител ьности представляет собой раствор перекиси водорода с буфером, pH которого равен примерно 10. [c.477]

    Проблема особенностей полярографического поведения органических соединений в смешанных водно-органических и неводных средах возникла одновременно с возникновением полярографии органических веществ. Ограниченная растворимость в воде подавляющего большинства органических соединений, не позволяющая достичь даже полярографических концентраций, вызвала необходимость поисков новых сред с высокой растворяющей способностью и обладающих к тому же достаточной электропроводностью. В ряде работ обзорного характера [1—9, 13, 14) освещены основные достижения в решении рассматриваемой проблемы. Уже давно в качестве сред для полярографирования были испытаны смеси воды со спиртами, гликолями, диоксаном, уксусной кислотой, смесь метанола с бензолом, а также неводные среды — этиловый и метиловый спирты, уксусная кислота, глицерин, этиленгликоль и др. Новые возможности для полярографического изучения органических веществ открыло применение высокополярных апротонных растворителей — К, К-диметилформамида, ацетонитрила и диметилсульфоксида, уже прочно вошедших в практику электрохимических исследований. В качестве возможных сред для полярографирования органических веществ за последние годы были изучены также пиридин, тетраметилмочевина, метила-цетамид, 1,2-диметоксиэтап, тетрагидрофуран, сжиженная двуокись серы, нитрометан и др. [c.210]

    Сульфохлорирование, открытое Ридом и Хорном в 1936 г., нашло широкое применение в технике, так как сульфохлориды ( мер-солы ) при омылении щелочами можно превратить в алкилсуль-фонаты ( мерсолаты — эмульгаторы, моющие средства), при действии алкоголятами — в эфиры алкилсульфокислот ( мезамо-лы , мягчители). В технике в качестве сырья используют парафины нормального строения с длиной цепи Сю—С15. в которые при облучении и охлаждении (20—25°С) пропускают одновременно хлор и двуокись серы. Для облучения, как и при фотохлорировании, можно применять свет с длиной волны около 500 нм. Однако более благоприятно облучение УФ-светом, так как сульфохлорирование при этих условиях ускоряется в большей степени, чем конкурирующее хлорирование. [c.198]


Смотреть страницы где упоминается термин Двуокись серы применение: [c.54]    [c.381]    [c.12]    [c.89]    [c.275]    [c.128]    [c.128]    [c.482]    [c.40]    [c.46]    [c.94]    [c.156]    [c.523]    [c.89]    [c.205]    [c.98]    [c.12]   
Общая химическая технология неорганических веществ 1964 (1964) -- [ c.66 , c.67 , c.86 , c.409 ]

Общая химическая технология неорганических веществ 1965 (1965) -- [ c.66 , c.67 , c.86 , c.409 ]

Газовый анализ (1955) -- [ c.29 ]

Газовый анализ (1961) -- [ c.29 ]

Технология серной кислоты (1950) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Серы двуокись



© 2025 chem21.info Реклама на сайте