Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель нитрозилы

    Определение в никеле нитрозо-Р-солью [c.73]

    Слабая растворимость внутрикомплексных соединений в воде используется в аналитической химии для количественного определения и отделения металлов из смеси их солей (диметилглиоксим для определения никеля, нитрозо- -нафтол — для определения кобальта и др.). [c.67]

    В 1883 г. М. А. Ильинский и Г. Кнорре предложили осаждать кобальт в виде соединения с а-нитрозо-р-нафтолом, В 1905 г. Л. А. Чугаев применил диметилглиоксим для осаждения никеля. Оба реактива были первыми органическими осадителями для определения цветных и тяжелых металлов. Этим было положено начало новому направлению в аналитической химии. Применение органических реактивов с тех пор сильна расширилось, и в настоящее время имеет очень большое значение в химическом анализе.  [c.98]


    Реагент специфичен на ионы никеля. В солянокислой среде образует желтый осадок с ионами палладия(П). С ионами железа (II) в аммиачном растворе образуется темно-красное окрашивание. а-Нитрозо- -нафтол [c.14]

    Большое принципиальное значение для аналитической химии имело исследование комплексных соединений металлов с органическими веществами. В результате такого исследования Л. А. Чу-гаев (1873—1922) предложил в 1905 г. диметилглиоксим как реактив На никель. По своим аналитическим характеристикам диметилглиоксим остается одним из важнейших реактивов в современной аналитической химии, известным во всем мире как реактив Чугаева. Хотя с применением органических реактивов в неорганическом анализе аналитики были знакомы и ранее — М. А. Ильинский (1856—1941) предложил а-нитрозо-Э-нафтол как реактив на кобальт еще в 1885 г., — систематические исследования в этой области начались с работы Л. А. Чугаева. Применение органических реактивов значительно расширило возможности аналитической химии. [c.10]

    Для определения кобальта в растворе, содержащем никель и железо, после экстракции соединения кобальта с 2-нитрозо-1-нафтолом хлороформом (см. стр. 161) хлороформный экстракт промывают последовательно раствором соляной кислоты двумя порциями по 20 мл каждая, один раз 10 мл воды и затем двумя порциями раствора щелочи по 5 мл каждая и 5 мл воды. Так как при этой операции освобождается некоторое количество реагента, которое входило в комплексное соединение железа и никеля, то раствор хлороформа еще раз последовательно промывают раствором щелочи и водой. Хлороформный слой через сухой фильтр переносят в градуированную пробирку емкостью 10 мл. Измерение оптической плотности растворов проводят на фотоэлектроколориметрах ФЭК-56, ФЭК-57 или ФЭК-60 при X = 365 нм или спектрофотометрах при X 307 нм. Содержание кобальта находят по градуировочному графику (см. стр. 162). [c.162]

    Для определения кобальта в азотной кислоте (о. ч.) три пробы по 10 г (7,1 мл) азотной кислоты упаривают каждую в кварцевой или тефлоновой чашке на водяной бане почти досуха. К остатку добавляют 5 мл буферного раствора и 2 мл раствора 2-нитрозо- 1-нафтола. Раствор нагревают почти до кипения, охлаждают и переносят в делительную воронку емкостью 50 мл. К полученному раствору приливают 5 мл хлороформа, оставляют стоять на 15 мин и экстрагируют соединение кобальта в течение 10 мин на механическом вибраторе. Избыток реагента удаляют из хлороформа в условиях, описанных при приготовлении эталонных растворов. Если в кислоте содержится никель, то хлороформный раствор обрабатывают в условиях, описанных на стр. 162. [c.163]


    Для определения кобальта в алюминии берут две навески металла по 1 г, растворяют каждую в 20 мл едкого натра, прибавляют посте пенно раствор лимонной кислоты до pH 8. Раствор переносят в мер ную колбу емкостью 50 мл и доводят объем раствора водой до метки В стакан емкостью 50 мл переносят 10 мл приготовленного раствора добавляют 2 мл раствора 2-нитрозо- 1-нафтола, нагревают почти до ки пения, охлаждают и переносят раствор в делительную воронку емко стью 50 мл. К этому раствору приливают 5 мл хлороформа, оставляют стоять 15 мин и экстрагируют соединение кобальта в течение 20 мин на механическом вибраторе. Водный слой отбирают пипеткой (используя резиновую грушу). Для удаления избытка реагента хлороформный слой обрабатывают 5 мл щелочи в течение 20 мин, используя механический вибратор, затем промывают водой. Если имеется примесь железа, то его комплексное соединение разрушается раствором щелочи при удалении избытка реагента из хлороформа. Для разрушения комплексных соединений никеля и меди, которые могут также содержаться в качестве примесей, раствор хлороформа промывают 5 мл соляной кислоты в течение 5 мин и снова водой, используя механический вибратор. Так как при этой операции освобождается некоторое количество реагента, которое входило в комплексные соединения меди и никеля, то еще раз раствор хлороформа промывают последовательно раствором щелочи (1 мл) и водой (5 мл). Раствор хлороформа переводят в мерный цилиндр или градуированную пробирку, добавляют хлороформ до 5 мл и измеряют оптическую плотность раствора на спектрофотометрах при к 307 нм. Раствор сравнения готовят в условиях, указанных на стр. 162. [c.164]

    В 1885 г. в работе, опубликованной в немецком журнале в соавторстве русским химиком М. Л. Ильинским (1856—1941) и немецким химиком Г. Кнорре, был предложен а-нитрозо-р-нафтол для определения кобальта в присутствии никеля. [c.36]

    Большинство карбонилов можно получать непосредственным взаимодействием металла с окисью углерода. Необходимо, чтобы металл находился в очень активном состоянии (например, свежевосстановленный из окисла или из соли). В тонкоизмельченном состоянии свежеприготовленный никель легко соединяется с окисью углерода при комнатной температуре и атмосферном давлении (см. синтез 75). Для других металлов требуются более высокие температуры (до 400°) и очень высокие давления (до 700 атм). Трикарбонил нитрозила кобальта получают обработкой специально приготовленного кобальта смесью окиси углерода и окисн азота. [c.223]

    Предложена для обнаружения кобальта [206, 791, 924, 1408] она образует с соля.ми кобальта растворимое соединение красного цвета, его свойства были описаны на стр. 32. С нитрозо-R-солью реагируют также ионы двухвалентного железа, никеля, меди и других металлов, однако образующиеся соединения легко разрушаются кислотами. [c.55]

    Нитрозо-2-нафтол применялся для отделения кобальта от никеля, цинка и алюминия [817], от никеля [133, 134], железа 1135, 522, 684], цинка [1228], марганца [891] и др. Примеры применения реагента для отделения кобальта и его определения в сталях, рудах, силикатных породах, почвах, биологических материалах, чистых металлах и др. см. в гл. 9, [c.74]

    Ионообменная хроматография. Для поглощения разделяемых катионов чаще всего применяются анионитные смолы дауэкс 1, амберлит и другие в хло-ридной, фосфатной или цитратной форме. Методы разделения основаны на способности катионов кобальта давать в сильно солянокислом растворе хлоридные анионные комплексы, поглощающиеся анионитом катионы никеля, марганца и некоторых других металлов в этих условиях не задерживаются анионитом и проходят в фильтрат. При промывании колонки более разбавленным раствором соляной кислоты, например 4 N раствором, происходит вымывание кобальта, в то время как медь, железо остаются адсорбированными смолой. Описаны и другие методы, когда разделяемые катионы поглощают катионитами, а затем вымывают кобальт растворами подходящих комплексообразующих веществ, например, раствором нитрозо-К-соли, комплексо-ном III и др., или смесью растворов соляной кислоты и органических растворителей. В табл. 18 дана сводка предложенных мето- [c.81]

    Фотометрическое определение кобальта в никеле нитрозо-Н-С0Л6Ю после разделения кобальта и никеля анионитом [1082]. 2олянокислый анализируемый раствор пробы пропускают через колонку с амберлитом ША 400. При этом кобальт задерживается в колонке, а никель проходит в фильтрат. Кобальт вымывают из колонки раствором соляной кислоты и заканчивают определение кобальта нитрозо-Н-солью. [c.201]

    Влияние материала электрода иногда приписывают только величине перенапряжения водорода на нем. Действительно, на металлах с высоким водородным перенапряжением реакции восстановления часто идут полнее. Кроме того, на таких электродах легче могут быть достигнуты потенциалы, при которых происходит носстановление трудно восстанавливаемых соединений. Однако в общем случае прямого параллелизма между водородным перенапряжением на электродном материале (его катодным потенциалом) и его активностью по отношению к реакциям электровосстановления не существует. Более того, оказывается, что некоторые соединения лучше восстанавливаются на катодах с низким перенапряжением и хуже или даже вообще не восстанавливаются на металлах с высоким водородным перенапряжением. Такое избирательное электровосстановление органических соединений представляет собой распространенное явление (Л. И. Антропов, 1951). Примеры избирательного восстановления приведены в табл. 21.1. На катодах с низким перенапряжением — платине и никеле (особенно в форме черни или губки) —преимущественно восстанавливаются изолированные ненасыщенные связи в органических соединениях жирного ряда и двойные связи в бензольном кольце. В то же время эти связи практически ке гидрируются на катодах, обладающих высоким водородным перенапряжением, таких, например, как ртуть или свинец. Напротив, полярные группы — карбонильная и карбоксильная — восстанавливаются на катодах с высоким перенапрям ением водорода и не затрагиваются на катодах с низким перенапряжением. Исключение составляют нитро- и нитрозо- [c.432]


    Неорганические ионы для экстрагирования переводят в комплексные соединения с неорганическими или органическими лигандами. Особенно эффективны для этой цели органические комплексанты, образующие так называемые хелатные соединения. Например, диметилглиоксим является селективным экстрагентом для никеля, а-нитрозо-р-нафтол—для кобальта, дифенилтиокарбазон (дитизон) применяют для экстракции таких металлов, как серебро, ртуть, свинец, медь, цинк. С неорга-ническимн лигандами можно экстрагировать железо(П1) в виде соединения НРеС , железо(1П), кобальт(П) и молибден (V) — в виде комплексных ионов с роданид-ионом. [c.311]

    Ф. И. Боротицкая и Ю. С. Прессанализируя вопрос о целесообразности того или иного способа очистки цинковых растворов от кобальта, пришли к выводу, что очистка а-нитрозо-р-нафтолом целесообразнее очистки ксантогенатом. Цементация цинковой пылью в присутствии активаторов типа арсенат натрия целесообразна, если, кроме кобальта, из раствора необходимо выделить еще никель и другие примеси вроде мышьяка и сурьмы. Авторы экспериментально подтвердили целесообразность удаления избытка органических реагентов и некоторых продуктов реакции, образующихся при очистке как посредством адсорбции ионообменной смолой Вофатит Е, так и активированным углем. [c.430]

    Реактивы п-нитрозо-N,N-диметиланилин 3,0 г спирт этиловый абсолютный 35 мл никель Ренея 0,5 г уксусный ангидрид 5 мл водород электролитический. [c.243]

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]

    Для аналитической химии большой интерес представляет экстракция незаряженных внутрикомплексиых соединений в условиях образования мономерных частиц в органической фазе. Обычно в качестве лигандов применяют органические реагенты, обладающие кислотными функциями (Кцисс — 10 — 10 °), являющиеся чаще всего бидентатными. Примером определения элементов в виде внутри-комплексных соединений является определение никеля в ряде объектов а-диоксимами (стр. 186), кобальта нитрозо-нафтолами (стр. 160), цинка дитизоном (стр. 220), алюминия 8-оксихинолином и др. Для этого определяемый элемент в виде внутрикомплексного соединения переводят в органическую фазу с последующим фотометрированием экстракта. [c.80]

    Медь (И) и никель (И) образуют с нитрозо-Н-солью растворимые в воде комплексные соединения состава МеН, МеКа. МеНд. В кислой среде существуют преимущественно комплексные соединения состава 1 1, в нейтральной и слабокислой — состава 1 2, в щелочной— 1 3. Образование того или иного комплексного соединения в растворе зависит от концентрации нитрозо-Н-соли. Соединение МеНз образуется при большом избытке реагента. До сих пор нет определенной ясности в структуре образующихся соединений. [c.119]

    Основоположниками применения органических аналитических реагентов (ОргАР) являются М. А. Ильинский, применивший а-нитрозо- -нафтол для обнаружения кобальта, и Л. А. Чугаев, синтезировавший и применивший в анализе диметилглиоксим для обнаружения и количественного определения никеля. [c.69]

    Комплекс очень устойчив логарифм константы устойчивости lgP 17. Реакция весьма чувствительна хгоедел обнаружения т = 0,5 мкг, предельное разбавление 310 мл/г. С использованием 1-нитрозо-2--нафтола можно определять также никель(П), палладий(П), железо(Ш). [c.229]

    Поскольку нитрозо- и гидроксиламиносоединения промежуточно образуются при восстановлении нитросоединений в амины, для их восстановления можно применять те же самые восстановители. Обычно для восстановления этих и других перечисленных в заглавии соединений, используются водород в присутствии платины или никеля Ренея, гидриды металлов (например, алюмогидрид лития) гидразин, гидросульфит натрия и т. д. Поскольку эти методы синтеза большого значения не имеют, рассмотрены просто примеры для каждого класса соединений. [c.475]

    Какое соединение наиболее пригодно в качестве формы осаждения а) оксихинолинат алюминия или А1(0Н)з б) диме-тилглиоксимат никеля или Ш(0Н)2 в) оксихинолинат магния или MgNH4P04 г) а-нитрозо-Р-нафтолинат кобальта или oS  [c.53]

    Аналитические реагенты традиционно были неорганическими и органическими (экстракты дубильных орешков или фиалок, щавелевая кислота). Во второй половине ХЕХ в. число органических соединений, используемых для анализа, увеличивается. Предложен (1879) реактив Грисса на нитрит-ион (смесь а-нафтиламина и сульфаниловой кислоты дает с нитритом красное окрашивание). М. А. Ильинский (1885) использовал 1-нитрозо-2-нафтол в качестве реагента на кобальт. Большое значение имели работы Л. А. Чугаева, применившего диметилглиоксим для обнаружения и определения никеля. [c.18]

    К фильтрату, окрашенному в оранжевый или темно-зеленый цвет комплексными соединениями кобальта (никеля и меди) с нитрозо-К-солью, прибавляют 3 лл азотной кислоты (1 1) или больше до изменения окраски в оранжевый или желто-вато-ораЯжевый цвет и нагревают до кнпения. При этом комплексы никеля и меди разрушаются, а окраска кобальтового комплекса с нитpoзo-R солью остается. Охладив раствор, доводят его объем дистиллированной водой до 20 мл и сравнивают окраску в колориметре с окраской стандартного раствора. [c.388]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Нитрозо-2-нафтол. Свойства соединения кобальта с этим реагентом были уже рассмотрены на стр. 31. Обнаружение кобальта 1-нитрозо-2-нафтолом описывается во многих работах [13, 131 — 133, 232, 405, 406, 408, 443, 495, 559, 587, 642, 666, 683, 689, 792, 793, 1047. 1261, 1338, 1360, 1410, 1435]. Реагент образует осадки не только с ионами кобальта, а также с ионами уранила, церия(1 /), ртути(1), ванадия(У), титана(И1), никеля, ртути (И), меди и железа, однако большинство этих осадков растворимо в кислотах, и поэтому обнаружение кобальта с использованием 1-нитрозо-2-нафтола достаточно селективно. Влияние железа и меди устраняют, осаждая ионы трехваленг-ного железа фосфатом натрия, приче.м таким путем устраняется также влияние уранил-ионов медь восстанавливают иодидом калия, а выделившийся иод удаляют прибавлением сульфита натрия. [c.54]

    Разделение 1-нитрозо-2-нафтолом. Кобальт можно осадить или экстрагировать 1-нитрозо-2-нафтолом из растворов, содержащих ртуть, никель, хром, марганец, свинец, цинк, алюминий, кадмий, магний, кальций, бериллий, сурьму и мышьяк для удержания в растворе сурьмы необходимо прибавить винную кислоту [1467]. Кобальт отделяется вполне удовлетворительно от катионов ртути (II), олова (II), свинца, кадмия, мышьяка, сурьмы, алюминия, марганца, кальция, магния, висмута и никеля [755]. Однако в присутствии больших количеств никеля и олова, особенно если в растворе находится также висмут, осадки содержат большие или меньшие количества этих элементов. Пред-ттолагается, что мешающее влияние олова обусловлено образованием соединения, содержащего одновременно олово и кобальт. Полностью или частично осаждаются вместе с кобальтом медь (pH 4—13), железо (pH 0,95—2,0), ванадий (pH 2,05— 3,21), палладий (pH 11,82) и уран (pH 4,05—9,4). (Указанные границы pH осаждения взяты из работы [1402].) [c.74]

    При гетерометрическом титровании ионов кобальта раствором 1-нитрозо-2-нафтола [465, 466] в этанольных и в 50%-ных уксуснокислых растворах максимум помутнения наблюдается при соотношении Со + HR, равном 1 4, или Маз[Со(М02)е] HR, равном 1 3. В 50%-ных этанольных растворах, содержащих тартрат натрия, во всех случаях максимум оптической плотности находится при соотношении o HR=l 2. Большие количества алюминия, хрома, свинца, кадмия, цинка, бария, кальция, магния не мешают. В цитратном растворе можно определять кобальт также в присутствии никеля. [c.128]


Смотреть страницы где упоминается термин Никель нитрозилы: [c.405]    [c.122]    [c.224]    [c.10]    [c.25]    [c.339]    [c.478]    [c.479]    [c.479]    [c.160]    [c.154]    [c.72]    [c.123]    [c.133]   
Общая и неорганическая химия (1981) -- [ c.570 ]

Основы общей химии Том 3 (1970) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Нитроза

Нитрозил-ион

Нитрозо



© 2025 chem21.info Реклама на сайте