Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние скорости движения коррозионной среды

    Влияние скорости движения коррозионной среды [c.165]

    Из внешних факторов на скорость, вид и характер развития коррозионного процесса наиболее существенное влияние оказывают pH и температура коррозионной среды, состав и концентрация нейтральных растворов, концентрация растворенного кислорода, скорость относительного движения среды. [c.23]


    Влияние скорости движения коррозионной среды. Влия- ие скорости движения коррозионной среды на скорость разрушения металла особенно четко проявляется при коррозии с кислородной деполяризацией. Движение раствора способствует повышению концентрации кислорода в приэлектродном слое. [c.68]

    При изучении закономерностей коррозионных процессов не раз отмечалось влияние скорости движения агрессивной среды на интенсивность и характер коррозии, не менее существенное, чем влияние температуры, давления, состава среды и других факторов. [c.36]

    В большинстве случаев протекание электрохимической коррозии характеризуется локализацией анодного и катодного процессов на различных участках корродирующей поверхности металла, что приводит к неравномерному или местному коррозионному разрушению металлической поверхности. На процессы электрохимической коррозии металлов существенно влияют как внутренние, так и внешние факторы. К внутренним факторам следует отнести термодинамическую устойчивость металла, состояние его поверхности, структурную неоднородность, влияние напряжений и др. К внешним факторам относятся факторы, связанные с составом коррозионной среды и условиями коррозии (температура, скорость движения среды, давление и др.). [c.318]

    ВЛИЯНИЕ СКОРОСТИ ДВИЖЕНИЯ КОРРОЗИОННОЙ СРЕДЫ [c.280]

    Законы (113) и (116) могут быть обусловлены и смешанным контролем процесса внутренней (транспорт реагентов через пленку продукта коррозии металла) и внешней (транспорт окислителя из объема коррозионной среды к поверхности этой пленки) массо-передач при соизмеримости их торможений, которое обнаруживается по влиянию скорости движения газовой среды в определенном ее интервале на кинетику окисления некоторых металлов при достаточно высокой температуре (рис. 38 и 39). [c.65]

    Как правило, если нет необходимости в проверке влияния высоких скоростей, скорость движения коррозионной среды или скорость движения образца в среде поддерживают на уровне 7,5 см/с. Для изучения коррозии при высоких скоростях используют образцы в виде дисков, насаженных на вертикальный или горизонтальный вал, вращающийся в среде. Линейная скорость вращения дисков может составлять 800 см/с. [c.161]

    Влияние температуры, давления, скорости движения коррозионной среды на скорость коррозии [c.3]

    Влияние скорости относительного движения коррозионной среды. Скорость коррозии не зависит от того, что находится в движении — металл или коррозионная среда. Скорость относительного движения существенно влияет на коррозионные процессы, идущие с кислородной деполяризацией, так как благодаря движению концентрация кислорода в приэлектродном слое увеличивается. Продукты коррозии, пассивирующие поверхность металла, при движении отслаиваются, что приводит к повышению скорости коррозии. При больших скоростях относительного движения повышение концентрации кислорода может привести к пассивации поверхности металла. При очень высокой скорости наблюдается коррозионная эрозия, т. е. комбинированное электрохимическое и эрозионное разрушение металла. [c.26]


    Влияние температуры на скорость коррозии неоднозначно. В случаях, когда скорость коррозии определя ется диффузией кислорода, при повышении температуры одновременно начинают действовать несколько факторов, по-разному влияющих на скорость процесса уменьшается растворимость кислорода, увеличивается скорость его диффузии, возрастает конвекция. На рис. 9.3 показана зависимость скорости коррозии стали в воде от температуры. Движение коррозионной среды влияет на скорость коррозии. Эта зависимость носит сложный характер. Вначале скорость коррозии возрастает. Затем, по мере увеличения поступления кислорода, наступает некоторая пассивация. При дальнейшем ускорении потока скорость коррозии снова возрастает. Для морской воды, богатой хлоридами, скорость коррозии возрастает постоянно с увеличением скорости обтекания (рис. 9.4). [c.267]

    Влияние на интенсивность коррозии скорости движения коррозионно-активной среды выражается сложными зависимостями. Характер их различен для разных условий службы конструкционных материалов. [c.42]

    Однако данные, полученные в экспериментах с вращающимися в коррозионных средах цилиндрическими образцами, не могут, по нашему мнению, рассматриваться как результаты опытов, моделирующих влияние скорости потока среды на процесс коррозии. При вращении образца на скорость коррозии влияет не только движение агрессивной жидкости, но и изменения среды, специфичные для вращательного движения. Под действием центробежной силы происходит своеобразное центрифугирование продуктов коррозии продукты анодного процесса, имеющие большую плотность, [c.38]

    Сопротивление материалов действию растворов серной кислоты, а следовательно, и длительность эксплуатации оборудования зависят от условий воздействия агрессивных сред, их температуры, концентрации, скорости движения и наличия абразивных частиц. В настоящее время еще нет единых нормативов и требований к противокоррозионной защите оборудования, которые обязывали бы принимать то или иное решение в зависимости от коррозионных условий эксплуатации. Но предусмотрено увеличение расчетной толщины стенок аппаратов на 1 мм для компенсации коррозии под влиянием агрессивной среды. [c.327]

    Движение нейтральных растворов со скоростью не выше 6 м сек, повидимому, не оказывает влияния на скорость коррозии. В некоторых случаях движение жидкости способствует замедлению коррозионного процесса, обеспечивая однородность среды. Однако повышение скорости движения раствора, с целью выравнивания величины pH, допустимо только до тех пределов, пока не создается опасность эрозионного разрушения. [c.121]

    Скорость электрохимической коррозии металлов зависит от сложного комплекса физико-химических, тепловых, механических и других факторов, называемых внутренними и внешними. К внутренним факторам, помимо рассмотренных в гл. 1 термодинамической стабильности металлов и их строения, относятся структурные особенности сплавов, способность металлов и сплавов к пассивации, влияние механических напряжений на коррозионный процесс, характер обработки и состояние поверхности сплавов н др. Внешние факторы включают характер агрессивной среды, концентрацию водородных ионов, температуру и скорость движения потока раствора, давление, влияние блуждающих токов, микроорганизмов и др. [c.15]

    Другая, вероятно, более существенная причина связана с физическим свойством солей, получившим название критической относительной влажности. Когда в закрытом объеме присутствуют насыщенные растворы солей, то устанавливается критическая относительная влажность. При этом за счет испарения или конденсации сохраняется равновесная влажность. Подобный процесс может свести к нулю влияние изменений скорости напыления или концентрации в широком диапазоне. Вероятно, подобный процесс происходит на практике при испарении или высыхании, но с той разницей, что в этом случае нет закрытой системы, где можно легко получить равновесие, и, кроме того, ветер, дождь или движение среды могут в разной степени влиять на коррозионные элементы. [c.158]

Таблица 2 Влияние движения среды на коррозионный процесс в плаве АЬ СИ сиеси А/й.бн кон (продолжительность опыта 100 чао скорость вращения мешалки 240 об/мин. = 420 - 450 с) Таблица 2 <a href="/info/1656374">Влияние движения среды</a> на <a href="/info/402774">коррозионный процесс</a> в плаве АЬ СИ сиеси А/й.бн кон (продолжительность <a href="/info/333504">опыта</a> 100 чао <a href="/info/13684">скорость вращения</a> мешалки 240 об/мин. = 420 - 450 с)
    Кроме примесей, важное влияние на практике часто оказывают и другие факторы, такие как движение жидкости и передача тепла. Наличие потока усиливает влияние примесей, увеличивая скорость их доставки к корродирующей поверхности, и может в некоторых случаях (например, никель в плавиковой кислоте) мешать образованию защитных пленок или даже приводить к их удалению. В условиях теплопередачи скорость коррозии скорее всего зависит от эффективной температуры поверхности металла, а не от температуры раствора. Если металл горячее, чем кислый раствор, то коррозия, как правило, бывает сильнее, чем при той же комбинации среды и металла, но в изотермических условиях. Усиление коррозии, вызванное теплопередачей, может быть особенно заметным в случае любого металла или сплава, коррозионная стойкость которого связана с пассивацией, так как, повидимому пассивность довольно резко нарушается, если температура превышает критическое значение, зависящее в свою очередь от состава и концентрации кислоты. В случае частичного нарушения пассивности может возникнуть питтинговая коррозия или коррозия, локализованная в горячих точках. Если пассивность нарушается полностью, то происходит более или менее равномерная коррозия. [c.151]


    Физическая химия - естественно-научная дисциплина, комплексно изучающая взаимообусловленные превращения вещества и энергии. Наука о коррозии и противокоррозионной защите ( коррозиология) занимает важное место среди разделов физико-химии, использующих электрохимический подход. В процессе коррозии поверхность металла является катализатором окислительно-восстановительных превращений компонентов жидкой и газовой фаз, как это имеет место в гетерогенном катализе, но сама служит участником реакций. Поэтому большую роль играют степень гетерогенности металлической поверхности, ее фазовый состав, ноликристалличность и взаимное влияние структурных составляющих материала. Ситуация осложняется изменением во времени электродного потенциала и поверхностных слоев корродирующего металла и среды. Поэтому научной основой коррозиологии является электрохимия растворяющихся металлических поверхностей как самостоятельный раздел теоретической электрохимии. Основными понятиями являются физико-химическая система, включающая металл и среду, а также физико-химический процесс. Исходя из этого, коррозия трактуется как переход компонентов металлического материала из его собственной системы связей в состояние СВЯЗИ с компонентами среды. Химическое и (или) электрохимическое взаимодействие металла и среды изменяет его свойства и нарушает его функции. Коррозия характеризуется скоростью воображаемого непрерывного движения точки фронта коррозии, то есть границы раздела между металлом и средой, в том числе продуктами коррозии. Техническая скорость коррозии как характеристика коррозионной стойкости -это наибольший показатель коррозии, вероятностью превышения которого нельзя пренебречь. Существуют следующие показатели коррозии массовый ( г/м с), линейный (мм/год), объемный ( м/с), токовый (А/м ), а также время до появления первого очага коррозии, ДОЛЯ поверхности, занятая продуктами коррозии, количество точек или язв на единице поверхности и др. [c.8]

    В работе [4 ] описаны конструк1Ц1я зондов для исследования высокотемпературной коррозии железа, которые могут применяться в жидкости и газовой фазе. В работе [5] предложен прибор для одновременного испытания ингибиторов коррозии и накипеобразова-ния. Прибор позволяет проводить испытание в потоке жидкости, изучать влияние скорости движения жидкости, температуры, давления, pH и состава коррозионной среды. [c.9]

    Коррозионная агрессивность среды определяется физико-химическими свойствами углеводородного и водного компонентов системы, их составом, количественным соотношением, наличием растворенных газов (сероводорода, углекислого газа, кислорода), в значительной степени зависит от условий разработки и эксплуатации нефтяных и газовых месторождений, типа скважины, способа добычи, температуры, давления, скорости движения среды и др. Совокупность всех факторов оказы вает различное влия1ние на интенсивность коррозии. При прочих равных условиях решающее. влияние на коррозионную агрессивность среды оказывает сероводород. Поэтому принято классифицировать нефтяные и газовые скважины на содержащие и не содержащие сероводород. [c.11]

    На скорость, вид и характер развития электрохимической коррозии влияет ряд внешних и внутренних факторов. К внешним факторам можно отнести такие, как pH среды и температура среды, состав и концентрация растворов, концентрация растворенного кислорода, скорость относительного движения среды. Внутренними факторами, оказывающими существенное влияние на скорость коррозии металлов и сплавов, являются их термодинамическая неустойчивость, положение металлов в таблице Менделеева, тип и струьпура сплава и механический фактор. Под механическим фактором понимается воздействие на материал механических нагрузок — постоянных или периодических, внешних или внутренних напряжений. Механический фактор, усиливая термодинамическую нестабильность металла и сплава, может привести к разрушению сплошности защитных пленок на его поверхности. К таким видам коррозии относится коррозия под напряжением, которая возникает при совместном действии на металл постоянных растягивающих напряжений и коррозионной среды коррозионная усталость, возникающая при одновременном воздействии среды и периодического или знакопеременного механического воздействия. На устойчивость металла к корро-зионно-механическим повреждениям оказывает влияние ряд дополнительных факторов. Это технологические и конструкционные особенности деталей и изделий, условия их эксплуатации, такие факторы, как температура и перемешивание коррозионной среды и аэрация. [c.55]

    Определенную помощь для уменьшения расходов и времени на коррозионный прогноз может оказать программа для проведения прогноза коррозионной стойкости нержавеющих сталей в водных сульфатсодержащих средах [102]. Программа учитывает влияние шести независимых факторов коррозии температуру, pH среды, скорость движения водного раствора, концентрацию растворенного кислорода и ионов Ре + и С1 . Для определения коррозионного состояния системы используются термодинамические и экспериментальные параметры данной системы, а также эмпирические зависимости. Программа включает прогнозирование потенциала металла системы, силы тока коррозии, хода поляризационных кривых, области иммунности (активную и пассивную), она позволяет находить наиболее неблагоприятные сочетания условий, обеспечивающие развитие коррозии. Авторы наметили пути усовершенствования программы прогнозирования коррозии, что должно повысить точность и достоверность прогноза для величин, характеризующих корродирующую систему. [c.178]

    Во многих случаях коррозии металлов вполне допустимо рассматривать корродирующую систему как двухэлектродный гальванический элемент, в котором один электрод является анодом, а другой — катодом. Однако в действительности коррозионная система содержит больше двух электродов и является многоэлектродной. Даже вполне определенная двухэлектродная система в условиях коррозии становится системой многоэлектродной под влиянием ряда внешних факторов коррозии (различная степень доступа кислорода к отдельным участкам поверхности металла, различная скорость движения электролита и т. п.). С электрохимической точки зрения поверхность металла, например стального образца, представляет. целую систему короткозамкнутых электродов, имеющих различные потенциалы (кристаллиты основного металла, карбид железа, включения серы, фосфора, кремния, низкоплавкая эвтектика по границам зерен и др.). При соприкооно.вении с коррозионной средой поверхность металла дифференцируется на анодные и катодные участки и важно знать, какие из электродов данной многоэлектродной системы являются анодами и какие — катодами. [c.33]

    В зависимости от количества агрессивной среды, про-диффундировавшей в материал на определенную глубину, изменяются его механические, диэлектрические и защитные свойства. В связи с этим в качестве критерия оценки коррозионной стойкости полимерного материала в агрессивной среде можно принять скорость проникновения этой среды в материал. В работе [152] химическая проницаемость облученного полиэтилена оценивалась по глубине фронта постоянной концентрации агрессивной среды, определяемой индикаторным методом [153]. Показано, что проникновение сред в полимер происходит путем активированной диффузии. Предполагается, что вещество (среда) сорбируется на поверхности материала, растворяется в его поверхностном слое и мигрирует через него под влиянием градиента концентрации, запрл-няя пустоты, образовавшиеся в результате колебательного движения отдельных сегментов макромолекул. Концентрация диффундирующего веп ства на глубине х является функцией отношения x yt, где t — время диффузии. После того как фронт фиксируемой концентрации проходит через всю толщину материала, агрессивная среда продолжает накапливаться в нем вплоть до достижения сорбционного равновесия. Любые изменения строения полимерного материала, способствующие уменьшению подвижности сегментов молекулярных цепей, а также более плотной их упаковке, снижают скорость проникновения среды. Процессы, в результате которых повышается полярность полимера, увеличивают растворимость среды в полимере и скорость ее проникновения. [c.63]

    В целях правильной оценки наблюдаемого коррозионного процесса необходимо учитывать влияние на скорость коррозии основных факторов. Различают две группы факторов внешние и внутренние. К числу внешних относятся растворенные газы (Ог, СО2), pH среды, температура, солевой состав и скорость движения среды, а также влияние теплового потока. К числу внутренних факторов относятся химический состав металла, его икроструктура, наличие механических напряжений и состояние поверхности. [c.283]

    Питтингообразование алюминия интенсивно развивается в речных водах, содержащих хлориды, карбонаты и медь. Влияние меди особенно существенно в жесткой воде, так, содержание 0,02 мг/л меди способно привести к питтинговой коррозии алюминия. В мягкой воде, несмотря на ее большую коррозионную агрессивность, опасная концентрация меди выше, но и растворимость меди в мягкой воде больше. Образовавшийся на поверхности алюминия питтинг может развиваться в средах, которые сами по себе не способны вызвать коррозию. Во всех речных водах скорость роста глубины поражения быстро снижается со временем. При движении воды со скоростью >0,3 м/с питтингообразование замедляется или вообще подавляется. Повышение температуры может интенсифицировать процесс развития питтингов, но в то же время при температуре выше 50 °С в агрессивных жестких водных средах питтингообразование подавляется вследствие образования защитных пленок оксидов. [c.54]

    В этой связи интересны исследования влияния аэрации среды на коррозионную усталость нормализованной стали 40, проведенные в нашей лаборатории Ю. И. Бабеем и В. Т. Степуренко. При испытании в 3%-ном растворе ЫаС1 в открытой ванне (с доступом кислорода из воздуха), когда не образовывался защитный щелочной слой, условный предел коррозионной усталости стали —был на 26% ниже, чем при испытании в закрытой ванне без доступа воздуха. При испытаниях в дистиллированной воде наблюдался обратный эффект в окрытой ванне a был на 5% выше, чем в закрытой. В последнем случае кислород сначала повышает скорость коррозии, а затем снижает ее за счет пассивации корродирующей поверхности адсорбировавшимся кислородом, чего не наблюдается в растворе соли. Эти опыты подчеркивают необходимость указывать при условном пределе коррозионной усталости не только базу испытаний, состав среды и ее температуру, при которой он найден, но и возможность насыщения среды кислородом, а также, находится ли среда в покое или в движении. [c.113]


Смотреть страницы где упоминается термин Влияние скорости движения коррозионной среды: [c.141]    [c.74]    [c.632]    [c.78]    [c.33]    [c.78]    [c.78]   
Смотреть главы в:

Теория коррозии металлов Часть 1 -> Влияние скорости движения коррозионной среды




ПОИСК





Смотрите так же термины и статьи:

Влияние коррозионных пар

Коррозионная pH среды

Коррозионная скорости

Скорость влияние среды



© 2025 chem21.info Реклама на сайте