Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура плавления хлоридов алюминия

    Безводный хлорид алюминия при нагревании на воздухе возгоняется, не достигая точки плавления в запаянной пробирке он плавится в интервале температур 186—193 °С. Тройная точка хлорида алюминия (рис. 8-1) соответствует 192,6°С и давлению 0,228 МПа. Ниже приведена температура кипения хлорида алюминия при различном давлении [05, v. 5, р. 317]  [c.143]

    В зависимости от качества сырья и условий полимеризации получают смолы различных марок от светло-желтых, почти бесцветных и до черных. Температура размягчения, по маркам, повышается от 60 до 140 °С. Наибольшую ценность представляют светлые смолы с высокой температурой плавления. Инден-кумароновые смолы получают преимушественно путем каталитической полимеризации. Катализаторами полимеризации могут быть как протонные кислоты, так и, чаще, кислоты Льюиса (хлорид алюминия, иногда трехфтористый бор). Хлорид алюминия преимушественно используют в виде 7Г-комплекса с ксилолами или сольвентами. Жидкий тг-комплекс легко смешивается с углеводородным сырьем, что облегчает управление процессом. [c.317]


    Как видно из табл. 1.8, в периодах с увеличением порядкового номера элемента температуры плавления и кипения их фторидов и хлоридов закономерно снижаются. Тугоплавкие и нелетучие галиды в жидком состоянии электропроводны и кристаллизуются в решетках ионного типа. Легкоплавкие и летучие галиды в жидком состоянии не проводят электричества, а кристаллизуются в решетках молекуляр-ного типа. Встречаются галиды с промежуточными свойствами, например трихлорид алюминия. Примерно аналогичная картина изменения свойств наблюдается у фторидов и хлоридов элементов больших периодов, а также у бромидов и иодидов. [c.56]

    Ионные кристаллы образует также фторид алюминия. Он имеет температуру плавления 1040°С и плохо растворяется в воде. Но уже хлорид этого металла гидролизуется очень бурно и имеет температуру плавления всего 190°С. Отличие свойств фторидов от свойств остальных галидов здесь выражено особенно резко. [c.294]

    Методом, описанным ниже, можно получать хлориды в любых количествах. Его можно применить для приготовления безводных хлоридов других металлов, имеющих высокие температуры плавления и кипения, таких, как хлорид магния и марганца но этот метод не подходит для приготовления летучих хлоридов, таких, как хлорид алюминия [19]. Методика проста, и эксперимент заканчивается в течение 24—36 час. Необходимый прибор легко собрать из материалов, имеющихся в каждой лаборатории. [c.33]

    Зависимость термоЭДС от разности температур рабочего и свободного спаев несколько отличается от линейной, поэтому предварительно необходимо построить градуировочную кривую — графическую зависимость термоЭДС от температуры. Для этой цели получают кривые плавления эталонных образцов веществ высокой чистоты с известными значениями температуры плавления — так называемых реперных веществ. В качестве реперных чаще всего используют металлы высокой чистоты (олово, свинец, цинк, алюминий), тщательно очищенные соли (хлорид натрия, сульфат натрия, дихромат калия и др.) и некоторые органические вещества, например, бифенил (температура плавления 70,0 °С) и бензойную кислоту (температура плавления 122,5 °С). [c.100]

    Знание физико-химических характеристик хлоридов (температуры плавления, температуры кипения, температуры возгонки, давления паров) позволяет выбрать оптимальные условия их конденсации. Однако одновременное образование в процессе хлорирования нескольких хлоридов ведет к значительному изменению летучести индивидуальных хлоридов. Поэтому физико-химическое изучение систем, образуемых хлоридами ниобия, тантала, циркония, гафния, титана, железа, алюминия и других металлов, методами термического, тензиметрического и химического анализов имеет весьма важное значение. [c.73]


    На кривых охлаждения имеются остановки, соответствуюш,ие кристаллизации из расплава твердых растворов хлористого алюминия и хлорного железа (или твердого раствора пентахлоридов ниобия и тантала), и остановки, соответствующие затвердеванию тройной эвтектики. Температура плавления эвтектики не отличается заметно от температуры плавления чистого четыреххлористого титана. Растворимость хлорного железа в четыреххлористом титане заметно повышается в присутствии хлористого алюминия растворимость их смеси является средней величиной между растворимостью чистых хлоридов железа и алюминия и зависит от соотношения между содержанием этих хлоридов в растворе. [c.164]

    Как известно, соединения, образуемые хлористым калием с хлоридами алюминия, железа, ниобия и тантала, очень похожи на соответствующие соединения с хлористым натрием. Термическая прочность и температура плавления калиевых соединений несколько выше, чем соответствующих натриевых соединений. Поэтому замена хлористого натрия хлористым калием при очистке четыреххлористого титана от твердых хлоридов не должна повлиять на сущность процесса, а потребует лишь некоторого изменения температурного режима. [c.172]

    Существенное улучшение процесса циклизации 1,5-дибензо-илнафталина (17) может быть достигнуто добавлением в качестве компонента, снижающего температуру плавления хлорида алюминия, вместо Na l смеси Na l и КС1, третичных аминов (пиридин или хинолин), амидов карбоновых кислот (мочевина) (В. П. Есип, А. Б. Тарасенко с сотр.). Это позволяет почти в [c.132]

    В последнее время едкое кали в реакции обменного разложения заменяют хлоридом калия, но более высокая температура плавления хлоридов, чем гидроокисей, увеличивает трудности процесса. В связи с этим представляет интерес вакуумтермическое восстановление калия из его соединений, главным образом из хлорида калия, алюминием, кремнием, карбидом кальция и т. п. [c.321]

    Для пайки с легкоплавкими припоями применяют хлориды Zn b, d b, Sn b и др. Хлорид свинца слабо растворим в воде и малоактивен в качестве компонента флюса. Хлорид кадмия повышает температуру плавления хлорида цинка. Смесь хлоридов цинка и алюминия с глицерином рекомендуется для пайки с безоловянными легкоплавкими припоями. [c.145]

    Хлорид алюминия и хлориды остальных металлов этого гомологического ряда — твердые, бесцветные кристаллические вещества с невысокими сравнительно температурами плавления и кипения. При температуре сублимации или кипения они имеют бимолекулярный состав Alj le. Gaj lj и т. п. [c.449]

    Из характеристических галогенидов AIF3 фторид по свойствам редко отличается ОТ своих гомологов, в том числе по энтальпии образования (см, рис. 138), температурам плавления и кипения. Аномально высокие значения указанных констант для AIF3 по сравнению с другими галогенидами объясняются большей ионностью этого вещества вследствие наибольшей ОЭО фтора. В отличие от других галогенидов алюминия его фторид в воде практически нерастворим. В результате гидролиза хлорид, бромид и иодид алюминия дымят на воздухе в парах они существуют в виде димеров А12Гв с мостиковыми связями  [c.335]

    В 1953 г. проблемами гетерогенного катализа заинтересовалась группа сотрудников Миланского политехнического института во главе с профессором Натта [5]. Первоначально они применяли процесс Циглера, а позже стали вводить в полимеризационнуюсистему предварительно приготовленное твердое комплексное соединение, полученное в результате реакции четыреххлористого титана с триэтилалюминием. Изучение образующегося при этом осадка привело Натта с сотрудниками к открытию комплексных катализаторов на основе низших хлоридов титана и органических производных алюминия. Они установили, что при полимеризации пропилена, бутилена, стирола и других непредельных углеводородов на комплексных катализаторах образуются полимеры с высоким выходом и большим молекулярным весом. Эти полимеры коренным образом отличаются от обычных полимеров, синтезированных в гомогенной среде (способны кристаллизоваться, имеют гораздо более высокие и четкие температуры плавления, большую плотность и хуже растворяются в органических растворителях). Таким образом, можно провести аналогию между этими полимерами н двумя типами поливинилизобутиловогоэфира, описанными Шильд-кнехтом. Натта с сотрудниками с помощью рентгеноструктурного анализа и инфракрасной спектроскопии установили типы пространственного расположения заместителей у третичных углеродных атомов и строгую линейность полимерных цепей. [c.9]

    По окончании этой реакции СаСЬ взаимодействует с силикатом. Для полноты разложения необходимо [178] нагревание до температуры не ниже 800° С, т. е. несколько выше температуры плавления СаСЬ. При этом, однако, требуются специальные меры предосторожности, чтобы в процессе разложения не потерять литий в виде Li l. При точном соблюдении всех условий разложения силикатов метод Смита дает отличные результаты после выщелачивания спека в раствор переходят хлориды щелочных металлов, небольшие количества хлорида и гидроокиси кальция, а алюминий и кремний остаются в нерастворимом остатке. [c.267]


    Муллит может быть изготовлен при температуре ниже точки плавления из коллоидного кремнезема и основного хлорида алюминия [756]. Гидратация трикальцийалюмината ускоряется благодаря применению небольших количеств коллоидного кремнезема [757]. [c.610]

    Будучи глубоко убежденным в правильности периодического закона, Менделеев на основании системы элементов предсказал с шествование экабора с атомным весом около 45, которому предстояло занять место в клетке, расположенной ниже бора экаалюминия с атомным весом около 70 —в клетке под алюминием, и в пустой соседней клетке справа от него, под кремнием — экасилиция с атомным весом около 72 кроме того, он выдвинул предположение о вероятной величине удельного веса, температуре плавления, атомном объеме, составе и свойствах окислов и хлоридов, соответствующих этим простым веществам. Когда недостающие элементы были открыты — ими оказались скандий 215с (1879 г.), галлий з10а (1875 г.) и германий з20е (1886 г.), то экспериментально измеренные характеристики этих элементов с поразительной точностью совпали с предсказанными значениями, и уверенность в справедливости периодического закона сильно возросла. Укрепителями периодического закона называл Менделеев открывателей этих элементов — Л. Нильсона, П. Лекок де Буабодрана и К- Винклера. [c.29]

    Молекула безводного хлорида алюмишчя в твердом, жидком или газообразном состоянии ниже 440 °С соответствует димерной формуле Alo U. В интервале 440—800 °С в равновесии находится смесь димерного и мономерного хлорида алюминия. В интервале 800—1000 С хлорид алюминия существует в виде мономера, который выше 1000 °С частично диссоциирует. В индифферентных растворителях типа сероуглерода существует димерная форма. В растворителях, взаимодействующих с хлоридом алюминия (вода, пиридин, нитробензол, диэтиловый эфир), образуются комплексные соединения. В разбавленных растворах эти комплексы образуют мономерные ассоциаты хлорида алюминия, а в концентрированных растворах — димерные. Теплота образования AU U составляет 1346,7 кДж/моль. Электропроводимость кристаллического хлорида алюминия увеличивается с повышением температуры до максимального значения в точке плавления. В расплаве она падает до нуля, а затем при повышении температуры расплава медленно повышается. [c.86]

    Технологическая схема установки приведена на рис.14. Парафин (исходный с 25% отработанного) хлорируют в хлораторе 1 при 65-75 С до содержания хлора 12%, которое контролируют по температуре плавления хлорпарафина (38-40 С). В нижнюю часть хлоратора поступает электролитический хлор. Отходящие газы, содержащие до 5% хлора и 85% хлористого водорода,, поступают в ловушку для улавливания парафина ( на рисунке не показана). Xлopпagaфин, подогретый в теплообменнике блока до 70-80 С, направляют в реактор 2 для конденсации с нафталином. Соотношение хлорпарафина и нафталина 9 1. Расход катализатора (хлорида алюминия) 3%, считая на смесь ре-, агентов. После загрузки хлорпарафина в реактор при перемешивании подают нафталин, а затем - хлорид алюминта . Процесс конденсации в реакторе ведут при 65-85 С. По окончании конденсации в реактор 2 подают керосин. Раствор продуктов конденсации в керосине проходит в емкость 3 с теплообменником 4, заполненную горячей водой и растворенным НЧК для отмывки (комплексных соединений, хлористого водорода) [c.85]

    Смесь а- и -модификаций SO3 в том случае, когда взаимное превращение в достаточной степени замедленно (нри отсутствии влаги), ведет себя как смесь двух различных, взаимно растворимых в твердом состоянии веществ. Поэтому она не имеет вполне определенной температуры плавления, а плавится в некотором (в иных слзгчаях значительном) температурном интервале. Точно так же при возгонке наблюдается уменьшение давления нара. Поэтому эти модификации можно разделить фракционной возгонкой. Аналогичные явления будут наблюдаться и в случае других встречающихся в различных аллотропических модификациях веществ, нанример трехокиси мышьяка, хлорида алюминия и фосфора. Чтобы применить к таким системам правило фаз, надо обе модификации рассматривать как отдельные составные части системы (компоненты). Смите, развивший теорию этих явлений и обосновавший ее экспериментально, называет такие системы, в химическом смысле состоящие из одного вещества, но ведущие себя как системы, состоящие из двух веществ (бинарные системы), псевдобинарпыми системами , а модификации, образующие в твердом состоянии единую смешанную фазу,— псевдокомнонентами . См. также ртр. 703. [c.758]

    Эта перегруппировка, которая также происходит внутримолекулярно, в большинстве случаев, но не всегда, сопровождается алл ильным сдвигом в мигрирующей группе. В присутствии хлорида алюминия 0,8-диалкилдитиокарбонаты могут перегруппировываться термически в 8,8-диалкилдитиокарбонаты, а не подвергаться реакции элиминирования по Чугаеву, но эта перегруппировка происходит межмолекулярно [369].- Перегруппировка, которая происходит прн нагревании алкилароилтритиокарбонатов (402) выше их температур плавления, служит удобным методом получения эфиров ароматических тиолкарбоновых кислот [c.646]

    Травильное средство при сухом травлении должно находиться во время его использования в газообразном состоянии, а продукты реакции должны быть летучими веществами. В противном случае продукты реакции будут скапливаться на поверхности и даль нейшее травление станет невозможным. Например, если для травления А1 использовать фторсодержащее травильное средство, то будет образовываться нелетучий (температура плавления 1040° С) и процесс травления прекращается. По этой причине для травления алюминия применяют хлориды типа СС1 , ВС1з. [c.258]

    Проведенные исследования позволили установить тип диаграмм состояния. Все полученные диаграммы характеризуются простой эвтектикой. Температура плавления смесей эвтектического состава в пределах ошибки опыта равна температуре плавления чистого-ЗпСЦ. По составу эвтектические сплавы близки к составу четыреххлористого олова и содержат малое количество хлоридов тантала 1,8 вес.% Ta lj), ниобия 1,9 вес.% Nb U), железа и алюминия. [c.111]

    Взаимодействие хлористого алюминия с хлоридами щелочных металлов и аммония изучалось многими исследователями. Со всеми хлоридами щелочных металлов и хлористым аммонием хлористый алюминий образует соединения состава MeAl U, которые имеют сравнительно невысокие температуры плавления (натрий, калий и аммоний) и перегоняются без разложения. [c.153]

    Нами было установлено, что смеси хлоридов тантала, ниобия, алюминия с четыреххлористым титаном можно нагревать в запаянных стеклянных сосудах до температур плавления чистых хлоридов (200—220°С), растворимость которых изучалась. Более того, при изучении системы Ti U—Fe U установлено, что смеси четыреххлористого титана с хлорным железом можно нагревать несколько выше температуры плавления последнего (303°С). [c.156]

    Эвтектическая смесь хлористой и бромистой сурьмы привлекает внимание низкой температурой плавления ( 38°С). Она удобнее в эксплуатационных условиях, чем галогениды алюминия, так как в меньшей степени гидролизуется при соприкосновении с влагой воздуха. Коррозионные исследования, проведенные Робиным [6] при температуре до 600° С, показали, что в отсутствие контакта с окружающим воздухом, смесь галогенидов сурьмы практически не вызывает коррозии железа, а также сталей Ст. 10 и 1Х18Н10Т. Данные Робина по коррозионной стойкости металлов в расплавах хлоридов и бромидов сурьмы, алюминия, титана приведены в табл. 8.3. [c.180]


Смотреть страницы где упоминается термин Температура плавления хлоридов алюминия: [c.15]    [c.398]    [c.122]    [c.15]    [c.356]    [c.27]    [c.152]    [c.627]    [c.117]    [c.152]    [c.152]    [c.88]    [c.297]    [c.288]    [c.122]    [c.163]    [c.173]    [c.446]   
Неорганические хлориды (1980) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Температура плавления

Температура плавления алюминия



© 2024 chem21.info Реклама на сайте