Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь между растворимостью и ионизацией

    Аммиак очень хорошо растворяется в воде (при 20°С в одном объеме НгО растворяется около 700 объемов H3N). Хорошая растворимость объясняется образованием водородной связи между молекулами H3N и Н2О. Поскольку молекула H3N — лучший акцептор протона, чем НгО (с. 134), то в растворе имеет место ионизация  [c.349]

    СВЯЗЬ МЕЖДУ РАСТВОРИМОСТЬЮ и ИОНИЗАЦИЕЙ [c.100]

    Для третьей группы катионов (во внешней электронной оболочке находится 18 или 18 + 2 электронов) характерны иные зависимости. Большое число электронов во внешней оболочке способствует их сравнительно легкой деформируемости и поляризуемости. Жесткость электронной оболочки не так велика, как у катионов первой группы. В комплексах катионов третьей группы преобладает ковалентная связь, осуществляемая парой электронов, находящихся в совместном владении катиона металла и лиганда. Поэтому во многих случаях изменение устойчивости комплексов катионов элементов одной и той же группы периодической системы хорошо коррелирует со способностью этих катионов к образованию ковалентной связи. С количественной стороны способ1Юсть к образованию ковалентных связей можно описать ковалентной характеристикой, предложенной К. Б. Яци-мирским для объяснения растворимости некоторых малорастворимых соединений. Ковалентная характеристика представляет собой разность между энергией ионизации атома и теплотой гидратации образующегося иона. Чем больше энергия ионизации, тем больше энергии выделяется при обратном процессе — присоединении к нону электронов, которые отдает лиганд при образовании комплексного иона. С другой стороны, чем меньше теплота гидратации, тем меньше [c.254]


    Общий принцип анализа изотерм адсорбции смеси должен, по нашему мнению, основываться на выявлении связи между такими основными характеристиками адсорбции индивидуальных веществ из растворов, как молярное уменьшение стандартной энергии Гиббса избирательной адсорбции, растворимость вещества, состояние его молекул в растворе (прежде всего, учет ионизации, ассоциации, образования межмолекулярных и внутримолекулярных водородных связей). [c.173]

    Лигнин - это органический гетероцепной кислородсодержащий полимер, НС в отличие от полисахаридов, относящихся к полиацеталями, у лигнина отсутствует единый тип связи между мономерными звеньями. Наряду с углерод-кислородными (простыми эфирными) связями С-О-С присутствуют и углерод-углеродные связи С-С между звеньями, характерные для карбоцепных полимеров. В структурных единицах лигнина содержатся различные полярные группы и в том числе способные к ионизации (кислые) фенольные гидроксилы и в небольшом числе карбоксильные группы, вследствие чего лигнин является полярным полимером, проявляющим свойства попиэлектролита. Лигнин - аморфный полимер, как природный, так и выделенный. Из-за высокой степени разветвленности макромолекулы выделенных растворимых лигнинов имеют глобулярную форму и такие препараты представляют собой порошки. В лигнине, благодаря наличию большого числа гидроксильных и других полярных групп, значительно развиты водородные связи (внутри- и межмолекулярные). [c.365]

    Аммиак очень хорошо растворяется в воде при 20° С один объем HjO растворяет около 700 объемов HgN. Хорошая растворимость объясняется образованием водородной связи между молекулами HgN и НзО. Поскольку молекула HgN — лучший акцептор протона, чем НаО (стр. 156), то в растворе имеет место ионизация по схеме [c.364]

    Основные научные работы посвящены развитию электронных представлений в органической химии. В начале своей научной деятельности изучал физико-химические свойства органических соединений — их ионизацию, растворимость, цвет. Затем посвятил себя изучению (с 1919) электронного строения химических соединений. Занимался выяснением структуры различных типов комплексных соединений. Объяснил (1923) координационную связь в рамках представлений электронной теории валентности выдвинул (1925) понятие хелатов и хелатных колец для характеристики молекул соединений, содержащих внутренние водородные связи. По совету П. И. В. Дебая занимался (с 1928) определением дипольных моментов молекул с целью выяснения корреляции между их величинами и свойствами веществ. Автор книг Органическая химия азота  [c.462]


    Прочность связи образующейся пленки с поверхностью катода зависит от концентрации раствора и уменьшается с разбавлением последнего. Об этом свидетельствуют опыты, проведенные с ультразвуком в разбавленном электролите (рис. 32). Как видно, в данном случае ультразвук сильно ускоряет катодный процесс не только в зоне предельного тока, но также и при малой величине поляризации. Так, если в примененном нами концентрированном растворе при поляризации 20—30 мв под действием ультразвука скорость процесса повышается примерно в 2 раза, то в разбавленном электролите ускорение составляет примерно 4,5 раза. В зоне предельного тока в обоих растворах эффективность влияния ультразвука приблизительно одинакова. Усиление деполяризующего воздействия ультразвука с разбавлением электролита подтверждает вывод о взаимосвязи между пассивацией поверхности катода ч концентрацией электролита. Возможно, что одна из причин этого явления заключается в различной скорости процесса ионизации металла и неодинаковой растворимости образующихся на поверхности катода соединений в электролитах различной концентрации. [c.76]

    Как мы увидим в следующих главах, изложенный здесь закон химического равновесия применим к большому числу химических процессов. Его можно использовать для случая равновесия ионизации, например, для определения диссоциации слабых электролитов. Затем также для случая равновесия процессов окисления — восстановления, наконец, в процессах равновесия между твердой фазой и раствором. В связи с этим мы будем изучать закон химического равновесия, называемый произведением растворимости. [c.16]

    Каталитические свойства металлоорганических комплексных катализаторов, применяемых для осуществления различных реакций полимеризации, зависят от структуры образующегося комплекса, валентности атома переходного металла [1—4], характера и типа полярной связи в комплексе [5—7], пространственной конфигурации и возможности и степени ионизации этого каталитического комплекса [8—11]. Рассмотрение всех физико-структурных особенностей каталитических систем дает возможность установить некоторые основные критерии выбора металлоорганических комплексов, характеризующихся определенным составом, обеспечивающим оптимальную активность и селективность катализатора в данной реакции полимеризации. Именно поэтому авторы считают интересным исследование зависимости между каталитической активностью и физико-структурными свойствами растворимых комплексных систем типа продуктов взаимодействия триэтилалюминия с ацетилацетонатом ванадия, хрома, кобальта, — катализаторов, используемых в стереоспецифической полимеризации ацетилена [9]. [c.115]

    Для изучения химических реакций в твердых телах были проведены химические исследования на высокочистых полупроводниковых материалах [1]. Движения атомов в полупроводниках важны не только в связи с технологическим использованием методов диффузии для образования контактов в полупроводниковых устройствах, но также и потому, что чистые и почти совершенные полупроводниковые кристаллы являются особенно хорошей средой для изучения взаимодействия примесей и зависящих от диффузии реакций в твердой фазе. При изучении химических взаимодействий между примесями было показано, что можно использовать германий и кремний в качестве среды для наблюдения в очень разбавленных твердых растворах разнообразных химических явлений, обычно связанных с водными или другими жидкими растворами. Аналогия с водными растворами хорошая, так как и полупроводник, и вода при обычных температурах являются слабо ионизованными средами, причем при ионизации электроны и дырки образуются в полупроводнике так же, как водородные и гидроксильные ионы в воде. Электронно-дырочное равновесие и закон действия масс можно непосредственно применить к таким проблемам, как растворимость примеси, находящейся в равновесии с внешней фазой, ионизация примеси и распределение ее между различными местами кристаллической решетки соединения, таким же способом, который обычно используют для расчетов кислотно-щелочного равновесия, действия общего иона и т, д. Образование ионных нар в полупроводниках было детально и количественно изучено твердое вещество является отличной средой для проведения таких исследований вследствие его чистоты, отсутствия осложнений, вызываемых, например, эффектом гидратации и возможностью легко и независимо варьировать концентрации взаимодействующих ионов. [c.44]

    При растворении газообразного НГ в воде происходит гидратация. При этом наблюдается разрыв полярной связи Н—Г и образование гидратированных ионов (рис. 8.9). Гидратированные протоны Н (ац) и анионы 1 (ац) оказываются изолированными друг от друга. Их взаимодействие становится чисто электростатическим. Но так как ионные радиусы в ряду — С1 — Вг — 1 увеличиваются, то кулоновское взаимодействие между ионом гидроксония Н3О+ и галогенид-ионами Г в этом ряду уменьшается, что и приводит к увеличению степени ионизации а галогеноводородных кислот в ряду НР — НС1 — НВг —Н1 (см. табл. 8.12). Исходя из тех же соображений, можно объяснить и изменение растворимости НГ в этом ряду. [c.376]


    В отличие от реакций в растворах для взаимодействия твердых веществ их растворимость в воде или другом растворителе, а также степень ионизации не имеют какого-либо решающего значения. Химические реакции протекают и между малорастворимыми и нерастворимыми в воде твердыми веществами. Способность твердых веществ, к взаимодействию зависит от прочности химической связи ионов в решетке кристалла и внутримолекулярной связи атомов. [c.317]

    Физико-химический подход Абегга и Бодлендера виден из содержания их статьи, в которой отдельные разделы посвящены связи между электросродством (Е1ек1тоа1[1П11а1) и растворимостью электролитов, между электросродством и степенью диссоциации. Согласно Абеггу и Бодлендеру, ионизация соли происходит таким образом, что она распадается сначала на свои нейтральные части, а затем эти части, принимая одна у другой заряд, образуют ионы. Типичная способность к ионизации обусловливает главнейшие отличия неорганических соединений от органических... можно предполагать, что возможность реакции связана с ионизацией и что реакции органических веществ идут медленно вследствие незначительной диссоциации [там же, стр. 141—142]. [c.14]

    Однако, как отмечают многие авторы, связывать свойства осадков и, в частности, их растворимость только с электростатической характеристикой, каковой является радиус иона, совершенно недостаточно. Кроме того, радиусы ионов — величины очень условные и экспериментально не всегда могут быть определены. В образовании осадков большую роль играют донорно-ак-цепторные связи между ионами, а они не определяются радиусом иона. К. Б. Ядимирский предложил дополнительно характеризовать процессы осаждения термодинамической величиной — разностью между потенциалом ионизации и теплотой гидратации. Эта величина характеризует с термодинамической точки зрения процесс перехода гидратированного иона в газообразное состояние [c.41]

    В липопротеинах связь между липидами и белком осуществляется за счет взаимодействий различной природы адсорбционных (белок адсорбируется на поверхности липида, повышая растворимость и термическую устойчивость последнего) гидрофобных (между неполярными фрагментами молекул липида и белка) ион-дипольных (когда липид представлен фосфолипидом, способным к ионизации). Чаще всего в липопротеинах действуют комбинированные силы, способствующие образованию в высшей степени упорядоченных структур. В живых организмах липопротеины выполняют транспортную (перенос белком липопростетической группы), ферментативную, гормональную функции. [c.89]

    Положить в основу прогнозирования проявления вяжущих свойств у гидратационных вяжущих веществ закономерности растворимости пока не удается, так как неясны сами закономерности растворимости. Однако некоторые соображения следует привести. Несомненный интерес имеют представления Н. В. Белова [14] о том, что группы 0Н защищают растущий кристалл от резорбции, ог растворени . Возможно поэтому проявление вяжущих свойств так часто связано с гидратацией. Правомерность такой трактовки подчеркивается существованием связи между энергией кристаллической решетки И энергией гидратации вещества. Причем чем больше разность этих значений, тем меньше растворимость вещества. На возможность выявления глубоких зависимостей в этом плане, указывает также то, что закономерности изменения потенциалов ионизации в водных растворах солей щелочнозе>1ельных металлов II группы-полностью совпадают с наблюдающимися закономерностями проявления. вяжущих свойств у силикатов, алюминатов, ферритов этих-металлов. Потенциалы ионизации для Ве, 2п, Сс1, Нд — высокие (не проявляются вяжущие свойства) для Са, Зг, Ва низкие-(наблюдается проявление вяжущих свойств) Мд — занимает промежуточное положение. [c.55]

    Потеря диэлектриком электроизоляционных свойств, происходящая при некотором значении приложенного напряжения называется пробоем диэлектрика, значение напряжения, соответствующее этому, называют пробивным напряжением. Пробой жидкости, вызываемый тепловой дестру кцией и ионизацией вещества, а также возможным возникновением искры или дуги, приводит к появлению в жидкости примесей, снижающих пробивное напряжение. Пробой твердого диэлектрика обычно сопровождается разрушением материала. Академик П.П. Семенов объясняет пробой жидкости ее нагревом вследствие диэлектрических потерь в местах локализации примесей. В этих местах жидкость при меньшем напряжении поля переходит в парообразное состояние, что определяет возможность более раннего пробоя. Полностью растворимые в жидкой фазе вещества (например, многочисленные компоненты битума) обычно не снижают величину пробивного напряжения. Посторонние полярные вещества, находящиеся в виде капель или твердых частиц, в электрическом поле образуют проводящие мостики между электродами и сильно снижают (7 ,. В связи с этим, при использовании жидких веществ в качестве электрических изоляторов, следует применять только хорошо очищенные жидкости и принимать меры против их загрязнения. [c.766]

    Соединения, содержащие комбинированную (семиполярную) связь, занимают промежуточное положение в отношении летучести между соединениями, имеющими лишь ковалентные или электровалентные связи. Наиболее важные свойства, которые следует иметь в виду при делении молекул на электровалентные и ковалентные, следующие 1) электропроводность (для растворимых в воде соединений) 2) наличие или отсутствие стереоизомерии 3) степень летучести (электровалентные молекулы требуют затраты работы для отрыва их друг от друга и такие жидкости кипят при гораздо более высокой температуре, чем жидкости, образованные ковалентными соединениями) 4) растворимость в )лгле-водородных растворителях, т. е. нефтепродуктах или бензоле (неорганические соли нерастворимы, органические соединения растворимы) 5) тип упаковки молекул в твердом веществе (рентгеновский анализ кристаллов). Ионизация предполагает плотную упаковку (соли), в то время как ковалентные молекулы в кристаллическом состоянии имеют рыхлую структуру (MgO и СаО электро-валентны и имеют плотную структуру ВеО и aS ковалентны и обладают рыхлой структурой). [c.552]

    I группы или щелочных металлов Li, Na, К, Rb, s, (Fr), атом которых обладает единственным электроном на s-орбитали уровня, следующего за восьмиэлектронным уровнем атома инертного газа (в отличие от Си, Ag, Au). Химия этих элементов является наиболее простой по сравнению с химией элементов любой другой группы. Здесь также сходство между первым членом группы и родственными элементами значительно больше, хотя исключительно небольшие размеры атома и иона лития приводят к некоторым заметным отличиям в химических свойствах, которые будут подробнее рассмотрены в дальнейшем. Низкий потенциал ионизации (5,39 эе) обусловливает легкое образование иона Li , который существует как таковой в кристаллических солях, например Li l. В растворах ион сильно сольватирован, и в водном растворе его можно представить в виде Li (aq). Литий образует ковалентные связи Li — X. Вблизи точки кипения пар металла лития преимущественно одноатомен, но содержит около 1"/о двухатомных молекул Lig. Такие молекулы были обнаружены по характерному полосатому спектру. Несмотря на то что в первом приближении можно считать, что связь Li — Li обусловлена s—s-нерекрыванием, более подробное изучение свидетельствует о том, что имеется некоторая s—р-гибридизация, Б результате которой связь приобретает на 14 /о р-характер. Энергия связи Li —Li (27 ккал моль) довольно низка, а межатомное расстояние Li — Li равно 2,67 А. Существуют соединения лития, подобные gHgLi и gH-Li, которые проявляют свойства типичных ковалентных соединений, будучи довольно летучими и растворимыми в неполярных растворителях. В настоящее время не только не известны другие степени окисления лития, отличные от -fL но их нельзя ожидать вследствие того, что Li" обладает конфигурацией [c.57]

    Голд и Тай обнаружили лишь незначительное отличие спектра поглощения раствора двуокиси серы в олеуме от спектров индивидуальных компонентов, на основании чег( сделали вывод о том, что эти вещества до некоторой степени взаимодействуют между обой, но без значительной протонизации. Растворимость двуокиси серы в олеуме выше, чем в 100%-ной 112804, и быстро возрастает с увеличением концентрации 8О3, т. е. с ростом кислотности растворителя Это означает, что основность двуокиси серы, по существу, обусловливает ее растворимость в серной кислоте и олеуме, вероятно потому, что переходу протона, т. е. ионизации, предшествует образование комплекса с водородной связью  [c.168]

    V (СМ) и уменьшением растворимости обусловлен повышением прочности мостиковых связей атома азота цианогруппы с атомом внешнесферного металла. В пользу этого можно привести и другие аргументы. Так, например, зависимость между первым потенциалом ионизации атомов внешнесферных катионов и основной частотой V (СМ), активной в ИК-поглощении, для ферро- и феррицианидов щелочных и щелочноземельных металлов выражается линией, близкой к прямой (рис. 19) 5чем выше потенциал ионизации, тем больше частота V (СМ) [10]. [c.152]


Смотреть страницы где упоминается термин Связь между растворимостью и ионизацией: [c.171]    [c.295]    [c.80]    [c.160]   
Смотреть главы в:

Константы ионизации кислот и оснований -> Связь между растворимостью и ионизацией




ПОИСК







© 2025 chem21.info Реклама на сайте