Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота применения области

    Катализ имеет огромное значение в технике и природе. Подбирая соответствующим образом катализаторы, можно осуществить процессы в желаемом направлении и с нужной скоростью. Область применения каталитических реакций в химической промышленности в настоящее время совершенно необозрима. Напомним лишь, что такие важные процессы, как производство серной кислоты, синтез аммиака, окисление аммиака до азотной кислоты и многие другие, являются каталитическими. [c.274]


    Основные работы по химическому использованию различных продуктов каталитического гидрирования окиси углерода, проведенные в Германии, были обусловлены нехваткой определенных видов сырья в военное время. Например, вследствие дефицита натуральных жиров три фракции продуктов каталитического гидрирования окиси углерода перерабатывали в различного рода заменители. Фракцию дизельного топлива (насыщенные Сю—С а-углеводороды) использовали для получения синтетических моющих веществ с помощью сульфохлорирования (гл. 6, стр. 98) или хлорирования, за которым следовали конденсация с бензолом и сульфирование (гл. 5, стр. 87). Твердый синтетический парафин окисляли в высшие жирные кислоты, необходимые для производства различных сортов мыла (гл. 4, стр. 74). Из синтетического парафина можно получить жирные кислоты с большим молекулярным весом, чем у кислот, производимых окислением нефтяного парафина. Олефины с 10—18 атомами углерода превращали с помощью каталитической гидроконденсации с окисью углерода и водородом (оксо-синтез) в альдегиды и первичные спирты (гл. 11,стр. 195). Последние затем переводили обработкой серной кислотой в первичные алкилсуль-фаты с длинной цепью углеродных атомов. Пропилен и бутилены гидратировали в соответствующие спирты, которые затем дегидрировали в кетоны (гл. 8, стр. 149, и гл. 17, стр. 314 и 329). Из других областей применения продуктов каталитического гидрирования окиси углерода в Германии следует назвать производство синтетических смазочных масел, описание которого выходит за пределы данной книги. [c.63]

    В каких средах и почему марганец коррозионно устойчив В каких условиях он коррозионно нестоек Напишите реакцию растворения марганца в растворе серной кислоты. Назовите области применения марганца. [c.349]

    Поскольку уксусная кислота достаточно неудобна в работе, использование ее в качестве растворителя имеет смысл лишь тогда, когда это дает существенные преимущества по сравнению с другими, менее ядовитыми соединениями. В электрохимии ее применяли в трех различных областях кислотноосновном титровании, полярографии на КРЭ и как растворитель для реакции анодного ацето ксил про вания. К важнейшим свойствам растворителя, используемого при титровании, особенно при кулонометрической генерации титрованного раствора и потенциометрическом определении конца титрования, относятся диэлектрическая постоянная, кислотность и основность и константа ионного произведения. Уксусная кислота интересна в первую очередь своей кислотностью. По сравнению с другими кислотами, применение которых возможно для этих целей, например серной и муравьиной, уксусная кислота характеризуется лучшим сочетанием свойств. Ее диэлектрическая постоянная ниже, чем у этих двух кислот, но она не настолько мала, чтобы затруднить проведение электрохимических измерений. Хотя по кислотности уксусная кислота уступает указанным кислотам, все же она достаточно сильная кислота и способна титровать многие слабые основания. Уксусная кислота имеет намного меньшую константу автопротолиза (2,5 10 ) [2], благодаря чему она гораздо более удобная среда для титрования. [c.32]


Рис. 6.21. Области применения серной кислоты Рис. 6.21. Области применения серной кислоты
    В каких средах и почему никель проявляет коррозионную устойчивость В каких условиях никель коррозионно нестоек Напишите уравнение взаимодействия никеля с раствором серной кислоты. Назовите области применения никеля. [c.350]

    Возникновение проблемы элементной серы как крупнотоннажного техногенного образования нефте- и газоперерабатывающей промышленности связано с наличием устойчивой диспропорции между накоплением и потреблением серы, что в свою очередь обусловлено нарастанием эксплуатации месторождений газов и нефти с высоким содержанием серы, с одной стороны, и уменьшением потребления серы в традиционных областях (производство серной кислоты, целлюлозно-бумажная промышленность и др.), с другой стороны. Естественным выходом из создавшейся ситуации является расширение областей применения серы в наиболее емком направлении — создание самостоятельных материалов на основе серы. Учитывая ценные свойства серы (бактерицидные, гидрофобные, теплофизические и др.) и имеющийся небогатый отечественный и зарубежный опыт примене- [c.103]

    Целлюлоза, подобно любому спирту, образует сложные эфиры. При обработке смесью азотной и серной кислот целлюлоза превращается в нитрат целлюлозы. Свойства и область применения этого продукта зависят от степени нитрования. [c.979]

    Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60%), а также в производстве красителей (от 2 до 16%), химических волокон (от 5 до 15%) и металлургии (от 2 до 3%). Она применяется для различных тех- [c.151]

    Применение используется практически во всех областях производства, поэтому ежегодный расход серной кислоты может служить мерой промышленной деятельности общества. Важнейшие сферы применения серной кислоты показаны на цветном рисунке V. [c.184]

    Применение. Вода находит самое широкое применение в жизни человека, животных, растений. Без воды не было бы жизни. Вода является сырьем для получения водорода, участвует в органических синтезах, используется для газификации твердого топлива, служит катализатором ряда химических процессов. Вода применяется в главнейших областях основной химической промышленности (производство серной кислоты, азотной и т. д.), [c.167]

    Методы ионного обмена. Рассмотренные методы все-таки не дают той степени умягчения, которая требуется для некоторых областей применения воды кроме того, они громоздки и связаны со значительными расходами реагентов. В последние годы широкое распространение получили методы ионного обмена. Твердые материалы, способные к ионному обмену с окружающей средой, получили название ионитов. Сюда относятся различные вещества неорганические и органические, природные или синтетические. Одним из простейших ионообменных материалов является сульфоуголь, получаемый обработкой бурых углей концентрированной серной кислоты при нагревании. В настоящее время наибольшее значение приобрели различные ионообменные смолы, вырабатываемые на основе синтетических полимеров. В зависимости от того, какие ионы в этих смолах обмениваются — катионы или анионы, — различают катиониты и аниониты. Иониты представляют собой твердые электролиты, у которых один поливалентный ион является нерастворимым, а ионы противоположного знака способны к обмену на ионы, находящиеся в окружающем растворе. [c.70]

    Применение в технике и других областях. В странах, имеющих большие залежи серы, из нее непосредственно приготовляют серную кислоту. Из серы получают сероуглерод, изготовляют черный порох, ультрамарин, серные спички, органические сернистые красители, горчичный газ (иприт), а также ее используют для вулканизации каучука, для дезинфекции и борьбы с болезнями виноградников, и, наконец, как изоляционный материал в электротехнике. [c.565]

    Четвертая область применения обусловлена известной каталитической активностью высших оксидов ванадия и его аналогов по отношению ко многим реакциям окисления. Эффективность каталитического действия этих соединений, например при контактном производстве серной кислоты, окислении аммиака и т. п., сравнима с платиной, однако они менее чувствительны к каталитическим ядам (например, сере или мышьяку) и значительно более дешевы. [c.311]

    Серная кислота находит разнообразное применение в самых различных областях народного хозяйства. Ее используют для осушки газов, в производстве других кислот, для получения удобрений, различных красителей. [c.373]


    Для нужд химического машиностроения тантал начали использовать с 1930 г. В 1948 г. эта область стала второй по объему применения тантала (первая — электроника). Сюда относятся концентраторы серной кислоты, нагреватели и холодильники гальванических ванн для хромирования, концентраторы для перекиси водорода, оборудование для производства и перегонки соляной кислоты, нагреватели для перегонки брома, элементы для нагревания и хранения концентрированной кислоты. Тантал используется также в производстве тонких и чистых химических и фармацевтических продуктов. [c.49]

Рис. 8.38. Области применения материалов в растворах серной кислоты, обеспечивающие скорость коррозии меиее 0,5 мм/год. Рис. 8.38. <a href="/info/58141">Области применения</a> материалов в <a href="/info/56031">растворах серной кислоты</a>, обеспечивающие <a href="/info/4944">скорость коррозии</a> меиее 0,5 мм/год.
    В седьмой главе на примере элементной серы изложены результаты применения метода механической активации для получения практически полезных продуктов. Накопление серы на предприятиях нефтяного и газового комплекса, а также ценные свойства серы (бактерицидные, гидрофоб-ность, низкая теплопроводность и др.) делают этот материал привлекательным для практического применения. Ограниченные на сегодня возможности использования элементной серы в традиционных сырьевых направлениях (производство серной кислоты, целлюлозно-бумажная промышленность др.), а также возрастающие объемы накапливающейся нефтегазовой серы делают особо актуальной задачу поиска рациональных путей ее применения. Работа является попыткой расширения области применения серы посредством перевода ее в высокодисперсное состояние осаждением из растворов. Для решения этой задачи на первом этапе был использован метод механической активации элементной серы в дезинтеграторе, далее механически активированная сера растворялась в водном растворе гидроокиси кальция путем термической обработки. Установлено существенное ускорение перехода механически активированной серы в раствор в составе полисульфида кальция. Обнаружена также возможность уменьшения количества не вступивших в реакцию компонент в три-четыре раза после однократной обработки и полное использование исходных компонент в результате двукратной обработки. [c.35]

    КИСЛОТОЙ. Так, полное разложение NaF серной кислотой достигается при нагревании стехиометрической смеси до 500° получаемый при этом сульфат натрия содержит, однако, 0,2—0,3% HF и до 0,7 /о NaF, что ограничивает области его применения [c.359]

    Из облагороженного сульфатного мыла (из древесины лиственных пород) разложением серной кислотой по обычной технологии получают очищенное от нейтральных веществ сырое талловое масло. Обычной вакуумной дистилляцией с присадкой водяного пара из него можно выделить до 70 % жирных кислот в виде продукта высокой степени чистоты (доля жирных кислот 96—97 %, неомыляемых веществ 1—2 /о) и высокой непредельности (йодное число до 170 г J2/100 г продукта). Продукт пригоден для производства высококачественных алкидных смол и в других областях применения ненасыщенных жирных кислот. [c.145]

    Метод очень удобен, однако область его применения ограничена. Без предварительного восстановления не всегда удается анализировать вещества, содержащие азот в окисленной форме. Нельзя этим методом определить азот в веществах, разлагающихся при взаимодействии с холодной серной кислотой с отщеплением азота и легко выделяющих азот при нагревании. Не образуется количественно аммиак и при разложении некоторых гетероциклических соединений. [c.68]

    Метизное производство [0-3, 0-23]. Улучшение условий труда в травильных цехах металлургических производств путем образования стабильных пен, предотвращающих испарение соляной и серной кислот.— Перспективная область применения. Алкилимидазолииы алкиламиноамиды ЧАС алкилпиридиновые производные. [c.325]

    Таким образом, по данным указанных патентов, используя описанный способ, можно почти в шесть раз снизить расход серной кислоты и значительно уменьшить количество отходов. Однако образую-тцаяся разбавленная кислота не может быть использована в синтезе дифенилолпропана, и для нее приходится искать другие области применения. [c.115]

    Железо и никель, обладая взаимрюй растворимостью, дают непрерывный ряд твердых растворов. Никель способствует образованию сплавов с неограниченной -у-областью. Железоникелевые сплавы устойчивы в растворах серной кислоты, щелочей и ряда органических кислот. Однако железоникелевые сплавы не нашли широкого применения в качестве конструкционных материалов в химическом машиностроении, так как они не имеют особых преимуществ по сравнению с хромистыми сталями. [c.218]

    В промышленно развитых странах производство сфной кислоты занимает первое место среди других химикатов и достигает только в Соединенных Штатах 3,0-10 кг в год. Серная кислота используется в том или ином виде практически во всех областях производства. Поэтому ежегодный расход серной кислоты может служить мерой промышленной деятельности общества. Важнейшие сферы применения серной кислоты показаны на рис. 21.20. [c.310]

    Многообразие свойств SO2 позволяет использовать его в различных областях. На легкой сжижаемости SO2 (при —10 °С) и быстром испарении жидкого SO2, сопровождающемся значительным поглощением теплоты, основано применение его в холодильных установках. Ои также может быть использован как дезинфицирующее средство. Основная же масса получаемого в промышленности SO2 расходуется на производство серной кислоты. [c.289]

    Робертс (1953) расширил область применения этой реакции, осуществив циклоприсоединение фенилацетилена к фторированным олефинам, и нашел способ последующего удаления атомов галоида. Так, при конденсации фенилацетилена с 1,1-дихлор-2,2-дифторэтиленом образуется производное циклобутена I. При дейстзии на соединение I серной кислоты происходит гидролиз атомов фтора и получается 2,2-дихлор-енон II, который в присутствии триэтиламина претерпевает аллильную перегруппировку с образованием изомерного 2,4-дихлоренона III  [c.33]

    Зависимость скорости коррозии от потенциала для системы Ре— Н2804 (в пассивной области по рис. 2.2) показана на рис. 2.12. При /< / 3=0,8 В происходит переход к активной коррозии, при и>и = 1,6 В наблюдается транспассивная коррозия [28]. Легирующие элементы в стали и химический состав сред могут в ряде случаев существенно повлиять на эти предельные потенциалы [2], причем скорость коррозии металла в пассивной области уменьшается главным образом под влиянием хрома. На рис. 2.13 показан пример зависимости тока поляризации и скорости коррозии для хромоникелемолибденовой стали в серной кислоте от потенциала в области потенциалов активной коррозии и при переходе к пассивному состоянию. При =—0,15 В в принципе еще возможно применение катодной защиты. Однако ввиду очень высокой плотности защитного токэ —около 300 А-М —этот [c.66]

    Сг207 на растворение металла в серной кислоте и неизменность скорости этого процесса при других потенциалах в той же области [ 105]. Снижение скорости растворения пассивного железа в присутствии окислителей может быть связано с их участием в образовании пассивирующего слоя на металле. В[ 106], например, с применением радиометрического метода .шо показано, что хром [c.24]

    Основной областью применения уксусного ангидрида япляется нр0И Г)0дств0 ацетата цсл. иоло . , получаемого ацетилированием целлюлозы уксусным ангидридом п присутствии серной кислоты (катализатор) и уксусной кислоты (растворитель). [c.622]

    Р " Методы газовой хроматографии позволяют успешно преодолеть трудности, связанные с определением серусодержащих соединений в сложных смесях. Основные области применения газовой хроматографии в производстве серы, серной кислоты и минеральных удобрений онисаны в работе [65], там же приведены методы анализа смесей SOj, S2, H2S, OS на различных сорбентах. Наиболее важной является проблема определения сероводорода в газовых смесях и сточных водах, которая с каждым годом становится все актуальнее [283, 366]. Метод газовой хроматографии позволяет анализировать смеси, содерн(ащие сероводород и серусодержащие органические соединения [66], [c.146]

    В результате длительного кипячения спиртовых растворов триптофана с циклопентаноном и циклогексаноном в присутствии 1н, серной кислоты с невысокими выходами выделены соответствующие тетра-гидро-0-карбопины [95]. Область применения реакции Пикте—Шпенглера распространяется также на триптамиды и N-ацилтриптофаны. Так кетоамвды 74 циклизуются в метанольном растворе соляной кислоты с одновременным образованием двух циклов [100]  [c.20]

    Удалению 802 из дымовых газов посвящепо значительно больше исследовательских работ, чем любому другому процессу газоочистки, но результаты их нельзя считать вполне удовлетворительными. Фактически в настоящее время еще нет пригодных для промышленного применения процессов, позволяющих экономично извлекать серу или 80 а из дымовых газов от процессов сгорания. Это положение объясняется двумя основными причинами. Во-первых, объем газа по отношению к количеству содержащейся в нем серы настолько велик, что установка для очистки этих газов неизбежно требует крупных капиталовложений и эксплуатационных расходов. Во-вторых, возможные побочные продукты такой очистки имеют ограниченное применение. Чистый жидкий 802 является сравнительно дорогим продуктом, но области потребления его весьма ограничены. Элементарная сера и серная кислота имеют практически неограниченный сбыт как основное сырье для химической промышленности, но продажная цена их низка. Проблема дополнительно осложняется и высокой температурой и сравнительно низким давлением дымовых газов, из которых необходимо извлекать 802- Кроме того, они содержат значительное количество пыли и других загрязняющих примесей. Предварительная очистка и охлаждение этих газов, а также подача их газодувками на установку выделения 80 2 требуют значительных эксплуатационных расходов. [c.142]


Смотреть страницы где упоминается термин Серная кислота применения области: [c.71]    [c.164]    [c.435]    [c.9]    [c.124]    [c.24]    [c.29]    [c.192]    [c.1735]    [c.54]   
Технология минеральных удобрений и кислот Издание 2 (1979) -- [ c.6 ]




ПОИСК





Смотрите так же термины и статьи:

Область применения

Серная кислота применение



© 2025 chem21.info Реклама на сайте