Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сера, потребление

    Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. В состав растений входят около 60 химических элементов. Для образования ткани растения, его роста и развития требуются в первую очередь углерод, кислород и водород, образующие основную часть растительной массы, далее азот, фосфор, калий, магний, сера, кальций и железо. Источниками веществ, необходимых для питания растений, служат воздух и почва. Из воздуха растения извлекают основную массу углерода в виде диоксида углерода, усваиваемого путем фотосинтеза, а из почвы — воду и минеральные вещества. Некоторое количество диоксида углерода воспринимается корневой системой растений из почвы. Среди минеральных веществ особенно важны для жизнедеятельности растений азот, фосфор и калий. Эти элементы способствуют обмену веществ в растительных клетках, росту растений и особенно плодов, повышают содержание ценных веществ (крахмала в картофеле, сахара в све-кле, фруктах и ягодах, белка в зерне), повышают морозостойкость и засухоустойчивость растений, а также их стойкость к заболеваниям. При интенсивном земледелии почва истощается, т. е. в ней резко снижается содержание усваиваемых растениями минеральных веществ, в первую очередь растворимых в воде и почвенных кислотах соединений азота, фосфора и калия. Истощение почвы снижает урожайность и качество сельскохозяйственных культур. Уменьшение содержания питательных веществ в почве необходимо постоянно компенсировать внесением удобрений. Ввиду огромных масштабов потребления минеральные удобрения— наиболее крупнотоннажный вид химической продукции, годовое количество которой составляет десятки миллионов тонн. [c.143]


    Производство сероуглерода из метана и серы. Потребление сероуглерода возрастает, так как увеличивается производство синтетического вискозного волокна, в котором он используется. [c.226]

    Коэффициент полезного действия самого процесса газификации обычно определяется как отношение теплоты сгорания производимого газа к общей теплоте сгорания исходного сырья, слагающейся из теплоты сгорания технологического топлива, идущего на процесс, и энтальпии пара и окислителя, поступающего извне. Значение коэффициента полезного действия колеблется в весьма широких пределах и зависит от вида процесса, оно может быть разным даже для различных предприятий, использующих для газификации один и тот же процесс. Бессмысленно сравнивать процессы, использующие кислород, с теми, которые работают на воздухе, поскольку высокий уровень потребления электроэнергии может дать неверное представление о коэффициенте полезного действия из-за того, что получаемые побочные углеводородные продукты могут быть использованы (а могут и не быть) в качестве котельного топлива и что в весьма широких пределах могут колебаться выход и ассортимент утилизируемой химической продукции. Сера, находящаяся в сырье, влияет на теплоту сгорания, но она в процессе газификации выводится. Наконец, суммарная тепловая мощность реакторов-газификаторов, а поэтому и их стоимость, различна для различных заводов. В связи с этим, по нашему мнению, предпочтительнее и правильнее сравнивать теоретические значения коэффициентов полезного действия, а не те данные по их значениям, которые опубликованы в литературе и которые весьма часто определены недостаточно правильно. [c.218]

    Альтернативой нефти и природному газу может служить также угольная энергетика, т.е, резкое увеличение добычи и потребления твердого топлива. Расширение масштабов его потребления в СССР идет по линии использования мощных месторождений дешевого низкосортного угля восточных районов — Канско-Ачинского и Экибастузского месторождений. В этих малонаселенных районах возможно прямое сжигание угля иа тепловых электростанциях (ТЭЦ) и передача электроэнергии в другие районы страны по дальним линиям электропередачи. Размещение мощных ТЭЦ, работающих на угле, в населенных районах невозможно из-за недопустимо большого загрязнения атмосферы диоксидами серы и углерода, золой и др. [c.36]

    Возрастающее потребление серы приводит к тому, что обычные источники не удовлетворяют спрос на серу, экономически эффективным оказывается извлекать ее из природных и нефтяных газов [85, 86]. [c.32]


    По результатам исследований разработана технология и спроектирована опытно-промышленная установка на Оренбургском ГПЗ. При работе на одном реакторе процесс позволяет полностью удалить тиолы из газов регенерации цеолитов, а сероводород окислить на 70-90%. Варьированием режима не удается в одну ступень достичь полной конверсии сероводорода в смеси с тиолами, что, по-видимому, объясняется вторичной реакцией взаимодействия тиолов с парами серы с образованием сероводорода. Топливный газ, соответствующий требованиям по содержанию сероводорода и тиолов для бытового потребления, может быть получен при двухступенчатом ведении процесса окислительного обессеривания. [c.112]

    Так, например, отмечали, что в условиях промышленного процесса гидроочистки тиофены и бензтиофены удаляются более трудно, чем меркаптаны и сульфиды а наиболее трудно удаляется последняя часть серы после 80%-ной десульфуризации наблюдается перелом кривой потребления водорода как функции удаления серы, т. е. для удаления последней части серы нужны очень глубокие преобразования структуры вещества. Трудность удаления высокомолекулярных и ароматизированных сернистых соединений можно также проиллюстрировать рис. 17, на котором показаны хроматограммы [c.282]

    После наложения каждой покомпонентной материальной связи рассматривается нагрузка (производительность) этих связей для каждого компонента. Если задано потребление к-го компонента в данном стоке, то нагрузка на связь по к-му компоненту равна этому потреблению. Если же к-й компонент применяется в серии последовательных реакций или на первом этапе анализа было решено, что этот компонент присутствует в избытке, то возможно, что нагрузка связи по этому компоненту будет превышать его расход в точке стока. [c.195]

    МПа. При этом потребление водорода возросло примерно на треть (от 20 до 27 м /м ), содержание серы в дизельном топливе снизилось менее чем до 0.05%, содержание ароматических соединений — менее чем до 20% (об.). Таким образом была обеспечена возможность получения топлива класса 2 по шведской классификации. [c.40]

    Помимо применения в будущем так называе.мой водородной технологии мы видим целый ряд других путей разрешения проблемы чистых газов. Во-первых, к ним следует отнести использование в качестве источника тепловой энергии высокосернистых видов топлива (топливной нефти, угля) после удаления различными средствами из продуктов сгорания или технологических выбросов серы, что позволит исключить загрязнение окружающей среды во-вторых, возврат к потреблению низкокалорийных газов, в-третьих, применение метанола, производимого из иско- [c.216]

    Для агломерирования железной руды и производства окатышей также требуется топливо со стороны. В основном используют коксовую мелочь, которая достаточно хорошо перемешивается с железной рудой, смесь обжигается. Полученную продукцию (окатыши или кусковой агломерат) загружают в доменную печь. При этом рекомендуется снижать потребление кокса путем подачи дополнительного углеводородного топлива, основная функция которого — дополнительное тепловое обеспечение процесса. Вопрос о повышении качества за счет снижения содержания серы в окатышах или агломератах в данном случае является второстепенным. [c.304]

    В связи со значительным ростом потребления дизельных топлив за последние годы для их производства широко используются нефти с высоким содержанием серы. По ряду технологических причин часть вырабатываемых топлив содержит относительно высокий процент серы. В то же время известно, что сера в дизельном топливе вредна, так как оказывает большое влияние на износ двигателей и по существу определяет срок их работы. Однако не все двигатели в одинаковой мере чувствительны к сернистой коррозии. Допустимое содержание серы в топливе зависит. от конструкции и от условий эксплуатации двигателя, [c.133]

    По своему химическому существу и по характеру влияния на технические свойства конечных продуктов реакция образования кислородных мостиков между молекулами смолы во время окисления битумов напоминает процесс вулканизации каучука серой. И в том и в другом случае идет образование трехмерных структур, в результате чего продукт становится более твердым, менее растворимым, менее мягким и химически более стойким. В зависимости от глубины этого процесса можно получить технические битумы со свойствами, варьирующими в весьма широких пределах — от полужидких текучих продуктов до твердых хрупких асфальтенов. Сравнительно небольшое количество кислорода остается связанным в окисленном битуме, большая же часть его идет на образование летучих продуктов окисления (вода, окись и двуокись углерода, органические кислородсодержащие соединения). Характер распределения кислорода в продуктах окисления гудрона и крекинг-остатка (при 275° С) на разных стадиях процесса приведен на рис. 20. Окислительная дегидрогенизация сырья, сопровождающаяся образованием воды, является основной реакцией, потребляющей в случае окисления гудрона 90% в начальной стадии и 69% в конечной общего расхода кислорода. Доля других кислородсодержащих соединений в потреблении кислорода значительно возрастает к концу процесса (31% для гудрона и 42% для крекинг-остатка), когда интенсивность окислительной дегидрогенизации постепенно ослабляется [46]. [c.135]


    Объем переработки нефти зависит от осуществления того или иного направления. Объем переработки нефти по первому направ-щению тем больше, чем меньше от нее отобрано светлых нефтепродуктов. При производстве одного и того же количества светлых по указанным двум направлениям объем переработки нефти меньше при использовании второго направления. В этом случае потребность в нефти уменьшается, следовательно, снижаются затраты на геологоразведочные работы, добычу и транспорт нефти, т. е., как показьшают специальные расчеты, для народного хозяйства второе направление более выгодно. Иногда для нахождения оптимального варианта необходимо проводить технико-экономические расчеты по ряду отраслей, связанных с подготовкой запасов нефти, ее добычей, переработкой, а также транспортом и потреблением нефти и нефтепродуктов. Следует учитывать также возможность получения серной кислоты или серы на основе сероводорода, образующегося при гидрогенизационных процессах переработки сернистых и высокосернистых нефтей. [c.206]

    При оценке эффективности выбранной поточной схемы переработки следует учитывать не только капитальные и эксплуатационные затраты ка осуществление этой схемы, но и эксплуатационные расходы потребителей нефтепродуктов. Вследствие условий залегания стоимость добычи малосернистых нефтей и Советском Союзе значительно выше, чем сернистых. Так, прирост добычи 1 т малосернистой нефти Азербайджана обходится в 5 раз дороже, чем 1 т сернистых и высокосернистых нефтей Башкирии . Однако при повышенном содержании серы в нефтях требуются значительные дополнительные затраты на их транспорт по трубопроводам (вследствие износа трубопроводов, насосов, емкостей и оборудования), а главное — на их переработку и потребление получаемых нефтепродуктов. [c.352]

    Затраты на транспорт и переработку сер истых нефтей, а также дополнительные расходы, связанные с потреблением сернистых нефтепродуктов, значительно снижают экономию от использования дешевых сернистых нефтей. Тем не менее при сравнении данных [c.353]

    Проблема гидрирования твердого топлива возникла в связи с возросшим потреблением нефти и необходимостью эффективно использовать низкокалорийные и высокозольные ископаемые угли, представляющие сложности при их сжигании. В промышленном масштабе гидрирование твердого топлива впервые было организовано в 30-х годах XX века в Германии и получило развитие в связи с необходимостью использовать для производства моторных топлив тяжелых смолистых нефтей с высоким содержанием серы. В настоящее время в различных странах работают установки деструктивной дегидрогенизации топлив производительностью от 200 до 1600 т/сутки. [c.185]

    По другому варианту можно сократить потребление нефти примерно на 320 тыс. м /сут, сохраняя производство бензина на уровне 1975 г. Одновременно достигаются экологические преимущества вследствие производства малосернистого бензина и уменьшения выбросов окислов серы в дымовых газах регенерации катализатора [59]. В этой же работе с учетом важности в ресурсах США нефтей севера Аляски проверена возможность переработки остатков двух аляскинских нефтей (двух атмосферных и одного вакуумного) при помощи комбинирования процесса гидрообессеривания (HDS) и каталитического крекинга флюид остатков после HDS. Ниже приведены данные о гидрообессеривании указанных видов сырья (процессе HDS)  [c.103]

    Природный известняк и глину до их поступления в печи обжига известняка и цементного клинкера обычно высушивают. Однако при производстве цементного клинкера по мокрому способу (рис. 62) сначала приготовляют жидкое цементное тесто (шлам), из которого все примеси удаляют путем осаждения. После этого чистый шлам перед нагревом и кальцинацией обезвоживают в специальных вращающихся обжиговых печах (их длина —до 200 м). Совершенно ясно, что исключительно большие размеры установок (производительность до 1000 т/сут цементного клинкера) и большое потребление ими топлива в большинстве случаев делают невыгодным применение СНГ. Суточный расход СНГ на большой вращающейся обжиговой печи (производительность до 1000 т/сут цементного клинкера, удельный расход тепла в среднем 6699 кДж/кг клинкера) составит примерно 145 т бутана (низшая теплота сгорания 46055 кДж/кг). Годовая потребность в СНГ при этом составит около 36 тыс. т. Такие большие количества СНГ поставляются лишь в те отрасли промышленности, где в конечных продуктах и дымовых газах, выбрасываемых через дымовую трубу, должно быть минимальное содержание серы. [c.294]

    Значение вторичного (повторного) использования энергоресурсов видно из следующих примеров. Применение котлов-утилизаторов, работающих на тепле, выделяющемся в процессе производства аммиака, дает возможность получить от 0,34 до 2 т и более пара на I т аммиака. В сернокислотном производстве установка котлов-утилизаторов у печей с кипящим слоем дает возможность использовать тепло продуктов сгорания серы. Получаемый пар (1 т пара на 1 т кислоты) идет па разные производственные нужды, в том числе на турбины с электрическими генераторами, что снижает потребление электроэнергии со стороны. Использование горячих промышленных стоков в производстве химических волокон снижает па 12 % расход тепла в этих производствах. [c.188]

    Приблизительные пбдсчеты показывают, что в 1937 г. мировое потребление серы для инсектофунгисидных целей составляло 250 тыс. т, из которых на долю Италии приходилось 75 тыс. т, Франции — 50 тыс. т и США — около 20,5 тыс. т, причем в последнем случае примерно половинное количество серы (10 тыс. т) было использовано в форме известково-серных препаратов. Из всего количества серы, потребленной в США в 1937 г., около 23% приходилось на долю удобрений, инсектисидов и фунгисидов. [c.202]

    Нефтеперерабатывающ,ая промышленность — отрасль тяжелой промышленности, охватывающая переработку нефти и 1 азовьгх конденсатов и производство высококачественных товарных нефтепродуктов моторных И энергетических топлив, смазочных масел, битумов, нефтяного кокса, парафинов, растворителей, эле — 1ентной серы, термогазойля, нефтехимического сырья и товаров народного потребления. [c.90]

    Максимальное содержание углеводородов в кислом газе — до 5%, по уже и оно увеличивает размеры оборудования и эне[)-гетические затраты. Установлено, что наличие 5% иасыщетпз1Х углеводородов увеличивают потребление воздуха на 35%, а общий объем перерабатываемого газа возрастает при этом на 27%. В зоне высоких температур реакционной камеры углеводороды образуют углерод, который снижает качество серы и ухудшает ее цвет за счет реакций углеводородных компонентов с ПаЗ образуются S2 и OS. Эти соединения не подвергаются воздействию обычно применяемых в процессе Клауса катализаторов, попадают в хвостовые газы, вызывая необходимость их очистки и уменьшая выход серы. Объемное содержание углеводородов в кислом газе до 2% практически не оказывает влияния на степень конверсии серы. При объемном содержании углеводородных компонентов более 2% обычно рекомендуется углеадсорбционная очистка кислых газов. [c.186]

    Расход водорода при гидрообессеривании остатков изменяется в пределах 80-140 м= /м , причем на реакции гидрогенолиза гетероатомных соединений расходуется лишь около 30%, а остальная часть идет на гидрирование ароматических соединений углеводородов, смол и продуктов расщепления [5, 6, 7, 8]. Производительность катализатора в зависимости от содержания в сырье металлов и асфальтенов при глубине удаления серы 70-93% изменяется в пределах 5,2-1,2 м /кг [9,-10], в то время как на дистиллятном сырье эта величина составляет до 40 м /кг. Низкие показатели по производительности катализаторов свидетельствуют о том, что проблема защиты их от дезактивации является весьма важной. Для подавления коксообразования на катализаторе вьшуждены прибегать к повышению давления водорода в реакторе. Это ведет к увеличению металлоемкости аппаратуры и возрастанию потребления электроэнергии [11,12]. [c.9]

    В настоящее время в БашНИИ НП разработан отечественный вариант гидровисбрекинга. В результате проведенных на пилотной установке исследований на гудроне западно-сибирской нефти установлено, что процесс целесообразно проводить при следующих оптимальных значениях технологическ их параметров температура-500 С, давление- 5 МПа, кратность циркуляции водорода- 750 н /нм сырья и объемная скорость сырья - 0,3 Ч-1. Получен следующий материальный Баланс процесса, % (мае.) газ - 11,0 бензин - 6,3 легкий газойль (160-340°С)- 25,2 и остаток > 340 С - 58,5. Потребление водорода составило около % (мае.). Остаток гидровисбрекинга (> 340 °С) содержит 1,2% (мае.) серы [в исходном гудроне 2,3% (мае.)] и может использоваться как котельное топливо М100 (BYgo с = 16). [c.80]

    Цены на серную кислоту в 1982 г. в США составляли от 7S до 95 долл. за тонну в зависимости от географического местоположения заводов. Олеум (дымящая серная кислота) обычно продается с надбавкой 3—5 долл. за тонну (и даже выше при концентрации свободного SO3 более 30%). Эти цифры приведены в расчете на 100%-ную H2SO4, хотя действительные анализы могут быть выше или ниже 100%. Стоимость серной кислоты тесно связана со стоимостью серы, которая за последние годы сильно возросла. Без сомнения, рост цен на серную кислоту и удобрения привел к замораживанию и даже снижению уровня их потребления. [c.242]

    С ОСНОВНОГО капитала в этом случае соответственно выше. Далее из-за более высокого содержания серы и меньшего количества летучих в перерабатываемом сырье возрастает потребление катализаторов и химикатов. И, наконед, более высокий выход жидких ароматических углеводородов увеличивает затраты на их складирование и хранение. Следует отметить, что расчет затрат по переделу в этом случае не является достаточно четким нри переработке лнгроина выход ароматических побочных продуктов не превышает 10%, поэтому они могут быть легко использованы в качестве топлива, необходимого для осуществления процесса. При гидрогенизации керосина и газойля картина другая. В последнем случае выход побочных продуктов составляет (ТК ОЛО 25% по энтальпии сырья, а так как сбыт этих материалов в качеств е химикатов маловероятен, то следует предусмотреть все необходимое для их складирования. Например, при переработке газойля (см. табл. 41) вполне возможно предположить, что побочные иродукты могут складироваться как топливо, скажем, в непосредственной близости от энергооиловых установок, и что Цена на них может быть определ ена примерно [c.198]

    Во второй колонке табл. 42 анал изируется случай, когда конечным продуктом является лишь ЗПГ. Сырьем для этого предприятия производительностью 7,08 млн. м газа в 1 сут является сырая нефть из Кувейта, потребление которой составляет примерно 7500 т/сут. Завод состоит из установок первичной дистилляций , вакуумной дистилляции, гидрокрекинга газойля, получаемого в предыдущих операциях, окислительного кислородного пиролиза вакуумного остатка (кислородная станция собственная), гидродесульфурации и газификации лигроина прямой перегонки 1или после гидрокрекинга, а также из установок очист Ки водорода и удаления серы. [c.201]

    Полностью подготовлена технологическая схема серийного производства продукции с улучшенными экологическими характеристиками - автомобильных бензинов неэтилированных по ГОСТ Р51105-97 ( Супер-98 , Премиум-95 , Регуляр-92 , Нормаль-80 ) и дизельного топлива с содержанием серы до 0,05%. Всего освоено 26 новых бидов продукции масел, пластмасс, товаров народного потребления. Результатом работы в этой области явилось присуждение ряду продуктов дипломов финалиста Всероссийского конкурса 100 лучших товаров России , в т ч. топливу дл) реактивных двигателей ТС-1, автомобильному мас.иу Уфалюб-люкс , композиции [c.15]

    Примечание. Автомоб1гльный неэтплированный бензин АИ-93, выпускаемый по ГОСТ 5.818—71 с государственным Знаком качества, имеет ряд измененных технических характеристик. Например, температура конца кипения летнего бензина АИ-93 со знаком качества 205 С зимнего — 195 С, содержание серы — не более 0,01%, кислотность — не более 0,8 мг КОН/100 мл бензина, содержание фактических смол на месте потребления — не более 2 мг на 100 ыл бензина. [c.8]

    Область применения черных металлов как конструкционных материалов чхюзвычайно многообразна и практически неогра-ничена. Серые чугуны используют как материалы для производства фасонных отливок. Они хорошо обрабатываются резанием, имеют повышенную сопротивляемость износу, вследствие включений графита хорошо работают в условиях трения. Используются в станкостроении и автостроении (станины, корпусные детали, зубчатые колеса, гильзы, блоки цилиндров, поршневые кольца и др. детали), для изготовления товаров массового потребления (ванны, раковины, отопительные батареи, посуда и др.). Из модифицированных высокопрочных чугунов изготавливают детали прокатных станов, коленчатые валы и Детали двигателей автомобилей. [c.46]

    Однако, несмотря на эти достоинства электроплавки, высокое потребление электроэнергии обусловило использование ее преимущественно для производства легированных и высококачественных (с низким содержанием серы, фосфора, кислорода и других вредных примесей) сталей, в том числе, инструментальных, жаростойких, шарикоподшипниковых и т. п. В последнее время, в связи с внедрением в металлургическое производство электропечей большой мощности (до 400 т), электроплавка стала применяться И для получения рядовых углеродистых сталей по упрощенной технологии с их последующим переплавом. [c.87]

    Развитие рассматриваемых процессов в схемах переработки нефти вызывает необходимость потребления водорода для повышения соотношения Н С в получаемых продуктах по сравнению с исходным сырьем, удаления сернистых и азотистых соединений, насыщения олефинов, гидрирования ароматических углеводородов. Расход водорода в различных процессах гид-рогенизационной переработки нефтяных дистиллятов и остатков при переработке типичных сернистых нефтей с содержанием серы 1,5—1,7% (масс.) приведен ниже [в % (масс.) на сырье] [55, 59]  [c.55]

    Эксплуатация тепловозов на дизельном топливе, содержащем 1% серы, связана с увеличением затрат в размере 2 р. 24 коп. на 1 т топлива. О дополнительных затратах, обусловленных потреблением продуктов, полученных из сернистых и высокосернистых нефтей, мвжно судить по следующим данным (в руб. на 1000 тп нефти)  [c.8]

    Несмотря на то, что тиосульфат скорее всего является промежуточным продуктом окисления сульфида и серы тетратионатобразующими гетеротрофами, как это следует из стехиометрии потребления кислорода, в прямых экспериментах накопления тиосульфата обнаружить не удавалось, по - видимому, вследствие высокой скорости окисления последнего до тетратионата. [c.123]

    К 2000 г. низкокачественные масла еще занимают значительную часть латиноамериканского рынка в 1995 г. около 79% занимали масла уровня качества API SF или ниже всесезонные масла составляли 36% рынка, из них 2% приходилось на серию 5W- и 10W- и 34% — на 15W-40(50) и 20W-5G синтетические и полусинтетические продукты составляли менее 1% рынка. Новые легковые автомобили к 2000 г. снизили потребление сезонных (летних и зимних) масел до 48% и низкокачественных масел — до 57% потребности. Государственные латиноамериканские компании контролируют 31% рынка смазочных материалов. В этой группе есть региональные лидеры, такие как аргентинская компания YPF и венесуэльская PDVSA, старающиеся поддерживать свою национальную роль и утверждать позиции в близлежащих странах. В 1996 г., например, YPF и Petrobras создали альянс. [c.134]


Смотреть страницы где упоминается термин Сера, потребление: [c.583]    [c.237]    [c.39]    [c.39]    [c.245]    [c.291]    [c.71]    [c.6]    [c.258]    [c.353]    [c.310]    [c.123]   
Теоретические основы биотехнологии (2003) -- [ c.447 ]




ПОИСК







© 2024 chem21.info Реклама на сайте