Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрия ион, определение фотометрией пламени

    При определении 10 —10 % натрия в алюминиевой проволоке кондиции 4н стандарты готовили на основе хлорида натрия. Применяли фильтровый пламенный фотометр, пламя водород—кислород [1215]. [c.165]

    Факторы специфичности при определении натрия и калия на фотометре. Пламя светильный газ-воздух I [c.157]

    Низкотемпературное пламя бензин—воздух применено при определении натрия в присутствии 10-кратных количеств щелочноземельных элементов [453]. Изучено влияние температуры на эмиссию натрия [1285]. Изменение температуры на 10% приводит к погрешности определения 3%. Использован фильтровый фотометр с визуальной регистрацией сигнала. Изучены характеристики водородно-кислородного пламени при применении комбинированной горелки-распылителя, работающей в турбулентном режиме [68]. Показано, что собственный фон пламени уменьшается и натрий можно определять с пределом обнаружения 10 мкг/мл. [c.115]


    При определении натрия в каолине вязкость раствора повышали прибавлением глицерина [899]. В работе [32] навеску глинозема растворяли в смеси фосфорной и серной кислот. Натрий определяли атомно-эмиссионным методом (линия натрия 589 нм). При определении натрия в глиноземе высокой чистоты использовали пламя кислород—водород [622]. При применении пламенного фотометра фирмы К. Цейсс (модель III) для определения натрия в цеолитах влияние [c.158]

    Предназначается для количественного определения натрия, калия и кальция в растворе. Источником возбуждения спектров является пламя горючей смеси пропан — бутан — в оздух. Для выделения спектральной линии Ыа, К или полосы Са(0Н)2 применяют интерференционные светофильтры с шириной пропускания в середине максимума 13 нм. Для поглощения мешающих излучений имеются абсорбционные светофильтры. Фотоприемником является фотоэлемент Ф-9. Выходной сигнал фиксируется стрелочным прибором-амперметром М—266 М. Нижний предел измерений —0,5 мкг/мл для Ка и К н 5 мкг/мл для Са. Продолжительность одного измерения 30 с. Расход исследуемого раствора 6,5 мл/с. На рис. 43 дана схема передней панели фотометра ФПЛ-1. [c.246]

    При фотометрировании обычно используют наиболее интенсивные резонансные линии калия 766,5 и 769,9 ммк, расположенные на границе между видимой и инфракрасной частями спектра. В фотографической спектрофотометрии пламени использовались также фиолетовые линии 404,4 и 404,7 ммк. Дела лись попытки применить их и в фотоэлектрической фотометрии пламени 2 . Вместе с предыдущими линиями они обусловливают характерный сиреневый цвет пламени, в котором испаряются соли калия. Как и в случае натрия, при определении калия по линиям 766,5—769,9 ммк предпочтительнее использовать низкотемпературное пламя смеси светильного газа с воздухом, при котором интенсивность излучения мешающих щелочноземельных металлов значительно уменьшена по сравнению с интенсивностью излучения калия (ср. стр. 130). [c.210]

    Атомно-абсорбционный спектральный анализ, абсорбционная фотометрия пламени — метод основан на способности свободных атомов некоторых элементов селективно поглощать резонансное излучение определенной для каждого элемента длины волны. Анализируемый раствор в виде аэрозоля распыляют в пламя горелки. В пламени происходит термическая диссоциация молекул с образованием атомов, находящихся в невозбужденном состоянии. Эти атомы поглощают излучение, проходящее через пламя горелки от внешнего стандартного источника излучения (например, от лампы с полым катодом), содержащего пары определяемого элемента. Для определения каждого элемента необходима отдельная лампа. Излучение лампы проходит через пламя горелки. Измеряют поглощение, т.е. отношение интенсивностей излучения, прошедшего через пламя без пробы и после распыления исследуемого раствора [57]. Метод позволяет определять до 10 г/мл солей серебра, бериллия, висмута, кальция, кадмия, меди, калия, лития, натрия, таллия и др. [c.17]


    В пламени светильного газа или водорода при 2000—3000° С возбуждаются спектры элементов с низкими потенциалами возбуждения (щелочные и частично щелочноземельные элементы). Такое пламя используют при анализе растворов и эмульсий в пламенных фотометрах, предназначенных для определения содержания калия, лития, натрия при массовых анализах. [c.144]

    В горелку поступают горючий газ, воздух и анализируемый раствор, который распыляется струей воздуха в специальном распылителе, работающем по принципу пульверизатора, и в виде аэрозоли подается в пламя горелки. Возникающее излучение с помощью оптической системы проектируется на монохроматизирующее устройство, которое выделяет излучения с определенными длинами волн. В пламенных эмиссионных фотометрах — это блок сменяемых светофильтров. Излучение направляется на фотоэлемент, фототок, возникающий под действием излучения, усиливается и подается на гальванометр. Интенсивность излучения атомов и, следовательно, величина отклонения стрелки гальванометра в большинстве случаев пропорциональны концентрации вещества в анализируемом растворе. Используя соответствующие светофильтры, можно этим методом определить, например, содержание натрия и калия при совместном присутствии, поскольку основные полосы излучения этих элементов заметно отличаются по длине волны (натрий — 589 нм, калий — 766 нм). [c.231]

    Ход анализа. Пробу готовят, растворяя 1 г породы, выпаривая ее досуха с концентрированной плавиковой кислотой и со смесью концентрированной серной и хлорной кислот, с последующим растворением влажного остатка в 20 мл 0,5 н. соляной кислоты. Нерастворимый остаток отфильтровывают и отбрасывают. Фильтрат разбавляют до 50 мл водой и берут две аликвотных части по 5 мл на анализ. Разбавляют одну аликвотную часть 5 мл воды, а другую — 5 мл воды, содержащей по 5 мкг/мл натрия и калия. Вводят каждый из этих растворов в пламя фотометра и заканчивают определение обычным путем. [c.85]

    При определении калия используется излучение его резонансного дуплета 766,5 и 769,9 нм, расположенного на границе между видимой и инфракрасной частями спектра и имеющего потенциалы возбуждения 1,61 —1,62 эВ. В этом случае предпочтительнее использовать низкотемпературное пламя светильного газа и воздуха, в котором меньше сказываются помехи от излучения щелочноземельных металлов, что особенно важно при регистрации излучения пламенными фотометрами с интерференционными светофильтрами. Их фактор специфичности для калия обычно составляет несколько тысяч. Влияние других элементов на интенсивность излучения калия в сильной степени зависит от его концентрации и температуры пламени. В пламени светильного газа и воздуха ионизация калия незначительно проявляется лишь при его низких концентрациях около 1—2 мкг/мл. Поэтому область графика, где tg а > 1, невелика, но зато увеличивается протяжение части кривой, где а < 1. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность его излучения. При более высоких концентрациях калия в растворе влиянием легко ионизующихся приме- [c.250]

    Пламенный фотометр предназначен для определения содержания натрия, калия и кальция в почвенных и растительных вытяжках посредством фотометрических измерений пламени, в которое вводится мелкораспыленный исследуемый раствор. Известно, что атомы химических элементов, попадая в пламя, возбуждаются, в результате чего получается характерный для каждого элемента спектр излучения. Принцип действия прибора основан на прямой зависимости между концентрацией элемента в анализируемом растворе и интенсивностью его спектра. [c.59]

    Способность окрашивать пламя в характерный цвет широко используют при количественном определении натрия методом фотометрии пламени. Подробно возможности этого метода рассмотрены в главе VIII Спектральные методы . [c.35]

Таблица 18. "Факторы оеяектмвности" при определении калия и натрия на шшсенкок фотометре (пламя пропан - воздух) Таблица 18. "Факторы оеяектмвности" при <a href="/info/50172">определении калия</a> и натрия на шшсенкок фотометре (<a href="/info/420749">пламя пропан</a> - воздух)
    Определение натрия Пламенный фотометр настраивают в соответствии с инструкцией по его эксплуатации на измерение концентрации натрия. Для фадуировки прибора используют растворы сравнения. Натрий определяют по аналитическим линиям 589,0 или 289,9 нм. Растворы сравнения и анализируемые фильтраты вытяжек вводят в пламя и регистрируют показания прибора. Настройку прибора проверяют по первому и последнему раствору сравнения не реже, чем через 20 определений. [c.98]

    Калибровочный график. Перед фотоэлементом пламенного фотометра устанавливают светофильтр для определения натрия. В стакан распылителя наливают бидистиллированную воду и вводят ее в пламя газовой горелки. Необходимо при -помощи микрокранов поддерживать давление воздуха и светильного газа постоянным величину давления измеряют манометром. Если при впрыскивании воды стрелка микроамперметра отклонится, ее снова устг(навливают на нуль электрическим корректором или, если корректор отсутствует, фиксируют показания микроамперметра. Затем в стакан распылителя наливают эталон № 1 и записывают показания микроамперметра. Отсчет повторяют 3 раза и берут среднее арифметическое значение. Затем распылитель и горелку тщательно промывают бидистиллированной водой и повторяют определения с другими эталонами. [c.243]


    Для снижения спектральных помех используют приборы с компенсацией постороннего излучения или с большей разрешающей способностью, маскировку мешающих. элементов, разные пламена. Например, определение натрия в присутствии кальция неселективно нри использовании пламенных фотометров из-за пропускания светофильтром на натрий излучения молекулярной полосы СаОН с Х,пах = 622 им. Для устранения влияния кальция можно в раствор ввести какой-либо освобождающий реагент , например соль алюминия, который на сгаднн десолызатацин аэрозоля свяжет кальцин в термически устойчивое соединение (алюминат кальция). [c.127]

    Для определения натрия в алюминии и его сплавах в основном используют пламенный атомно-змиссионный метод в пламенах пропан—бутан—воздух [269], водород—воздух [1215], ацетилен—воздух [537]. В абсорбционной спектрофотометрии используют пламя ацетилен—воздух [844] или ацетилен—кислород. В эталонные растворы вводят соли алюминия [690]. При применении пламени ацетилен-кислород в раствор вводят 40% об. метанола [956]. Предел обнаружения натрия — 10 %. Основу отделяют добавлением аммиака [920], высаливанием А1С1з [1114] или отгонкой триэтилтрибромида алюминия [1114]. Отмечено, что алюминий в интервале концентраций 140—220 мкг/мл не мешает определению натрия при использовании фильтрового фотометра [269]. [c.165]

    При определении натрия в оксиде никеля в стандартные растворы вводят хлорид никеля (2 мг/мл), используют фильтровый фотометр фирмы К. Цейсс (модель III) и пламя ацетилен—воздух [1108]. Анализ титановых белид и оксида титана проводят после отделения титана отгонкой тетрафторида титана [516] или сорбцией сульфоса-лицилатного комплекса титана анионообменником [1111]. Оксиды цинка, железа, магния, никеля переводят в раствор с помощью НС] [62]. Натрий определяют атомно-эмиссионным методом в пламени ацетилен—воздух с помощью пламенно-фотометрической установки монохроматора УМ-2 с фотоумножителем ФЭУ-38. Основные параметры установки напряжение на ФЭУ 1200 В, расход ацетилена 2 л/мип, воздуха 8 л/мин. Эталонные растворы готовят в интервале концентраций натрия 5-10 —1 10 %. Изучено влияние НС1, К, Са, Fe и Мп на интенсивность резонансных линий натрия. Погрешность определения — г = 0,03 0,05 [79]. [c.170]

    Одним ИЗ наиболее важных применений фотометрии пламени яв- ляется одновременное определение натрия и калия (а иногда и литмя) в биологических жидкостях, пищевых продуктах, удобрениях и т. д. Эти элементы возбуждаются значительно легче остальных, и их характери- стические линии эмиссионного излучения хорошо отделены друг от друга. Имеется несколько упрощенных приборов, предназначенных для выполнения этого анализа они используют газо-воздушное пламя и фотоэлементы с запирающим слоем. Некоторые приборы имеют указатели, шкалы которых непосредственно прокалиброваны в количеспзах определяемых элементов. [c.106]

    Фотометр пламенный лабораторный ФШ1-1 — фильтровый фотометр для количественного определения калия, натрия и кальция в растворах источником возбуждения спектров служит пламя горючей смеси пропан — бутан — воздух. Для выделения спектральных линий определяемых элементов испольг-зуют интерференционные светофильтры с максимумами светопоглощения (нм) для калия 785, кальция 622 и натрия 589. Мешающие излучения поглощаются адсорбционными светофильтрами. Продолжительность одного измерения около 30 с. В пламенном фотометре ФПЛ-1 фотоприемником является фотоэлемент Ф-9, а выходной сигнал фиксируется стрелочным амперметром М-266-М. Нижние пределы определеиия для калия и натрия 0,5 мкг/мл (или 5 10 %), а для кальция 5 мкг/мл (5 10" %). Определения вьтолняют по градуировочным графикам. [c.375]

    Использовать пламя для количественного определения элементов пытались давно. Как известно, пламя было первым источником возбуждения в спектральном анализе (работы Кирхгофа и Бунзена в 1860 г.), а первый прибор для количественного определения натрия по визуальному наблюдению свечения пламени (спектронатрометр) был описан более 90 лет назад 2. Позднее работы по визуальному количественному определению элементов были продолжены многими исследователями. В 30-х годах нашего столетия появились работы Люндегорда по фотометрии пламени Им был использован фотометр на основе монохроматора, на выходе которого помещался фотоэлемент, соединенный с усилителем постоянного тока и гальванометром. Примененный распылитель не давал возможности быстро сменять растворы, вводимые в пламя, что являлось недостатком, так как при этом увеличивалась продолжительность анализа и снижалась его точность. [c.10]

    Применяются как фотометры со светофильтрами, так и спектрофотометры. Достигаемые при работе с ними значения чувствительности и факторов специфичности в общем свидетельствуют о значительных преимуществах спектрофотометров перед фотометрами со светофильтрами. При работе с фотометрами, снабженными интерференционными светофильтрами, факторы специфичности для определения кальция в присутствии натрия получаются от 10 до 600, а в присутствии калия —от 4 до 200. Фотометр на основе монохроматора УМ-2 (воздушно-ацетилено-вое пламя, щель 0,1 мм) при определении по линии 422,7 ммк дает значения факторов специфичности в присутствии натрия — 6000 и в присутствии калия — 5600. [c.239]

    Н. С. Полуэктовым с сотрудниками 01П1сан метод определения лития в рудах на пламенном фотометре с интегрирующим устройством [16]. При этом проба вводится в пламя путем испарения из таблетки, которая готовится смешением навески с хлористым аммонием и карбонатами кальция, калия и натрия. Метод применим для содержаний 0,005— 1 % Ы20. Доп. ред.)  [c.49]

    А. Соединения и минералы лития окрашивают пламя в красивый карминовый цвет. Реакция более чувствительна, если минерал смочить концентрированной соляной кислотой некоторые минералы необходимо предварительно сплавить с бисульфатом и бифторидом калия в петле платиновой проволоки. Окраску маскирует желтое пламя натрия, но она может быть различена через синий светофильтр или при помощи спектроскопа. Спектр лития имеет ярко-красную линию 6708 А между красной линией калия и линией натрия. Если эта линия интенсивна и постоянна, минерал, по-видимому, содержит значительное количество лития. Предел видимости меняется с условиями и у различных наблюдателей, но все же можно обнаружить 10 мг лития. Небольшая спираль из платиновой проволоки, погруженная в раствор, содержащий ир11мерно 2-10 5 мг в 1 мл, а затем по.мещенная в пламя бунзеновской горелки, дает мгновенное появление красной линии лития. Метод для определения таких малых количеств лития тот же, что и для определения в минеральных водах [3] он состоит в измерении степени разведения неизвестного раствора, при которой линия лития едва обнаруживается, и сравнении с разведением подобного раствора с известным содержанием лития. Однако весовой метод так прост, что для средних и относительно больших количеств лития он более нредпочтителеп по сравнению со спектроскопическим. Современная аппаратура для пламенной фотометрии позволяет достаточно просто и быстро определять литий по его красной линии 670,8 ммк при его содержании от сотых долей процента (см. разд. IV, Г). Доп. ред.)  [c.49]

    В. И. Лебедев [8] определял рубидий по линии 780,0 ммк в гранитах, гнейсах и сиенитах, используя метод уподоблеппя стандартного раствора исследуемому. Н. С. Полуэктовым с сотрудниками [13] описан метод определения цезия в рудах на иламенном фотометре с интегрирующим устройством. При этом элемент вводят в пламя путем испарения из таблетки, которая готовится сменшваннем пробы с карбонатом кальция, хлоридом а.м.мония и карбонатами натрия и калия. Р1еобходимое количество пробы — 40 мг. Могут быть определены содержания цезия [c.57]


Смотреть страницы где упоминается термин Натрия ион, определение фотометрией пламени: [c.18]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.398 ]




ПОИСК





Смотрите так же термины и статьи:

Определение фотометрией пламени

Фотометрия

Фотометрия пламени

Фотометры



© 2024 chem21.info Реклама на сайте