Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь химическая ионная, кривая потенциальной

    В течение длительного времени полагали, что изменение потенциальной энергии в ходе электродного процесса связано с растяжением нарушаемых при этом химических связей между атомами в реагирующей частице или между электроактивной частицей и электродом. При такой интерпретации потенциальных кривых путь реакции отождествляется с изменением длины разрывающихся или образующихся связей. Однако эта трактовка является слишком упрощенной. Можно указать ряд электрохимических реакций, в ходе которых не происходит разрыва связей в ионах или молекулах, но которые тем не менее [c.185]


    В то же время любая электрохимическая реакция приводит к изменению заряда реагирующих частиц и, следовательно, вызывает перераспределение диполей растворителя, окружающих эти частицы. Такая реорганизация растворителя, как показывают теоретические расчеты, также сопровождается значительным изменением потенциальной энергии, а потому может служить основой для построения кривых потенциальной энергии, в которых путь реакции представляет собой некоторую обобщенную координату (у), характеризующую распределение диполей растворителя. По современным представлениям реорганизация растворителя является определяющим фактором в ходе элементарного акта разряда, хотя в общем случае необходимо рассматривать также энергию растяжения химических связей в реагирующих частицах. Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. точку А на рис. 79), то появляется вероятность квантовомеханического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты г/у. Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантовомеханического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень [c.186]

    Итак, химическая связь образуется в результате того, что электрон оказывается на связывающей молекулярной орбитали. При этом зависимость энергии взаимодействия от расстояния между ядрами (кривая потенциальной энергии молекулы) имеет минимум, которому соответствует наиболее устойчивое состояние молекулы (рис. 20). Координата / о этого минимума равна среднему расстоянию между ядрами в молекуле, которое называется длиной химической связи. Глубина кривой в точке минимума О представляет собой энергию химической связи, т. е. энергию, которую необходимо затратить, чтобы разрушить молекулу на исходные части. Энергия связи рассмотренного иона Н2, образованного из частиц Н и Н, составляет О = = 2,7 эВ, а длина химической связи / о = 1,06 А. [c.59]


    В настоящее время достаточно ясно, что катализ как гетерогенный, так и гомогенный происходит под действием химических сил (которые могут быть ковалентными, ионными, семиполярными и т. д.). Случаи физического катализа почти не встречаются. Как известно, валентно-химические силы характеризуются потенциальными кривыми, передающими взаимную потенциальную энергию атомов, как функцию расстояния между последними. На этих кривых характерной является точка минимума (дно потенциальной ямы), отвечающая равновесному межатомному расстоянию — длине связи — и равновесной энергии диссоциации (с учетом нулевой энергии) —энергии связи. Стенки потенциальной ямы настолько круты, что радиус действия валентно-химических сил очень мал, и поэтому с достаточным приближением можно считать, что атомы взаимодействуют при их соприкосновении, т. с. при сближении на расстояние длины связи. Для длин связи и энергий молекул с известным приближением действительна аддитивная схема, что позволяет пользоваться ими в конкретных случаях. [c.314]

    Форма потенциальных кривых зависит также от природы химической связи. В случае ионного характера связи зависимость от расстояния должна быть менее резкой (электростатические силы убывают с расстоянием более медленно, чем при ковалентной связи) и можно ожидать, что в правой части кривые будут более пологими. [c.53]

    Эта закономерность, по-видимому, является следствием того, что в ионную связь существенный вклад вносит кулоновское взаимодействие между положительно и отрицательно заряженными частями молекулы, которое при ее растяжении ослабляется медленнее, чем обменное взаимодействие энергия первого пропорциональна второго — ехр(—аг)]. Таким образом, анализ формы потенциальных кривых позволяет не только оценить энергии диссоциации химических связей, но и сделать определенные заключения об их природе. Ионные молекулы, в соответствии с указанным выше, должны обладать (по сравнению с ковалентными) более высокой реакционной способностью. [c.20]

    Расчет энергий разрыва химических связей. В связи с тем, что согласно принципу Франка — Кондона при ионизации переход от молекулы к иону происходит без изменения геометрии ядерной конфигурации, т. е. вертикально, то в результате в больщинстве случаев получают ион в возбужденном колебательном состоянии, так как потенциальная кривая или поверхность иона несколько [c.40]

    Вид кривой изменения потенциальной энергии, внутримолекулярного взаимодействия (ионов в ионной молекуле Na l, а также, например, в ковалентной молекуле Нг) является общим для всех видов химического взаимодействия. Кривые незначительно отличаются лишь величинами некоторых параметров. Таким образом, единство и определенное взаимодействие между противоположностями обусловливает существование того или иного типа химической связи, возникновение ее и, следовательно, образование химического соединения. [c.168]

    На рис. 16.1 изображена кривая зависимости потенциальной энергии от межъядерного расстояния для газовых молекул Na l, вычисленная с помощью уравнения (16.2) в предположении, что химическая связь в данном случае является чисто ионной. На этом рисунке показана также кривая потенциальной энергии, 31  [c.483]

    Учение о природе химической связи можно рассматривать как дальнейшее развитие теории Косселя. Электростатическая модель молекулы позволяет рассчитывать энергию кристаллической решетки. По законам электростатистики между противоположно заряженными ионами действует притяжение, подчиняющееся закону Кулона. Это притяжение возрастает при сближении ионов. Однако такое сближение может происходить лишь до определенного предела, т. е. до равновесного состояния. Характер такого взаимодействия в зависимости от расстояния между ионами описывается потенциальной кривой, изображен- [c.76]

    В то же время эта теория, непрерывно развиваясь, и сейчас еще не достигла стадии завершения. Имеются факторы и явления, рассмотрение которых необходимо включить в рамки теории и в ее физико-химические основы. К ним в первую очередь относится теоретический расчет адсорбции ионов и ее влияние на строение двойного слоя, прежде всего на поверхностный потенциал. В последнее время этим вопросом занимались Мартынов и Муллер [4], предложившие новые методы его рассмотрения. Наряду с количественными подтверждениями следствий теории как на модельных опытах, так и на коллоидных растворах и суспензиях (например, закона 2 действия противоионов, выведенного Дерягиным и Ландау в 1941 г., изменения устойчивости золей вблизи потенциала нулевого заряда, связь коагулирующей концентрации с постоянной межмолекулярного взаимодействия Гамакера) были обнаружены и несоответствия ей. Наиболее важное из них обнаружилось при измерении скорости медленной коагуляции [5]. Мартынов и Муллер наметили пути предоления этой трудности. В их работе показано, что при достаточно высоких зарядах поверхности и низкой валентности противоионов коагуляция может пойти за счет вторичного минимума на потенциальной кривой взаимодействия, в резз льтате чего изменяются теоретические закономерности коагуляции. [c.31]


    В работах Быковой [30], Зарифьянца и Попика [31] было показано, что обратимая физическая адсорбция молекул Оа и N0 на РЬЗ приводит к обратимым изменениям во временах жизни неравновесных носителей. Недавно Е. Н. Фигуровская обнаружила вполне измеримые обратимые изменения а для рутила при адсорбции аргона. По-видимому, возникающие при физической адсорбции небольшие поляризованные диполи в атомах аргона из-за высокого значения диэлектрической проницаемости двуокиси титана (сегнетоэлектрик) могут существенно изменить параметры близлежащих дефектов, превратив их в центры захвата. Даже в случае идеальной поверхности эти диполи могут вызвать появление в решетке локальных поляризованных областей, в которых будут нарушены периодические изменения потенциала. Из сказанного следует, что электропроводность также не является однозначным критерием химической адсорбции. Адсорбция аргона па ионном кристалле (ТЮа) является классическим примером физической адсорбцип. Однако наблюдаемая локализация носителей вблизи атомов аргона приведет к упрочению их связи с поверхностью и существенному изменению формы потенциальной кривой. [c.97]

    Реаюме. Для выяснения причин большей стабильности молекулярного иона водорода по сравнению с бесконечно удаленными друг от друга атомом водорода и протоном проанализированы составляющие полной энергии Н . Рассмотрены особенности изменения кинетической и потенциальной составляющих энергии связей в зависимости от межъядерного расстояния. Интерпретация полученных кривых основана на представлении их в виде суперпозиции пяти аддитивных вкладов, описываемых простыми функциями межъядерного расстояния. Количественно эти вклады объяснены непосредственно в рамках физических взаимодействий, а также при рассмотрении соответствующей вариационной процедуры. Анализ приводит к идентификации и истолкованию ряда эффектов, ответственных за образование химической связи в Н, таких, как промотирование, интерференция и квазиклассические электростатические взаимодействия. Показано, что ковалентная связь образуется в результате делокализации электронного облака. [c.259]

    Когда ионные молекулы поглощак)т свет в момент наибольшего сближения ядер, то, как видно из рисунка, небольшие вариации в значении г ведут к значительному изменению длины стрелок. Поэтому вместо узких полосок в спектре получаются целые области абсорбции, которые отвечают различным степеням возбуждения продуктов распада молекул. Потенциальные кривые молекул с атомной и ионной связью, а также их спектры поглощения сильно отличаются, поэтому изучение спектров и характера потенциальных кривых позволяет устанавливать тип химической связи. Такого рода исследования показали, например, что молекулы галогеноводородных кислот НС1, НВг, HI, а также галогениды таллия и серебра в газообразном состоянии являются не ионными, а атомными. [c.92]

    Как и предполагалось еще несколько лет тому назад [147, 148], вполне возможно, что для элементов, у которых энергии связи 5/-и 6й-электронов почти равны, электроны 5/ и 6с (и внешние) в некоторых соединениях и комплексных ионах участвуют в образовании химической связи. Это создает возможности для образования связей. Майер теоретически доказала, что собственные /-функции ведут себя совершенно своеобразно по сравнению с 5-, р-или -функциями [149]. Собственные /-функции при некоторых значениях атомного номера испытывают внезапные изменения в пространственной и энергетической системах координат. Эффективная потенциальная энергия /-электрона в поле остающегося атома имеет две отрицательные области, расположенные после минимума, наблюдаемого в районе Z=47. Вначале внешний минимум потенциала является преобладающим, так что собственные 4/-функции имеют в этом месте максимум и являются внешними функциями, т. е. пространственно они достигают или выходят за пределы 5й- и б -функций. Однако 4/-оболочка находится в более высоком энергетическом состоянии, чем 5й или 6 , и поэтому эти две оболочки заполняются первыми. С увеличением порядкового номера внутренний потенциальный лганимум становится более глубоким, причем настолько быстро, что он уже определяет характер 4/-функций в небольшом интервале значений Z форма кривой резко изменяется и начинает соответствовать внутренней орбите. Быстрое уменьшение потенциала вызывает настолько сильное падение энергии, что 4/-уровень начинает заполняться с церия (2=58), и с этого момента 4/-функции находятся уже внутри 5 - и 5р-электронных оболочек. Об этом свидетельствует незначительное влияние /-электронов на валентные свойства атомов редкоземельных элементов. [c.515]

    При дальнейшем небольшом увеличении энергии электронов возбуждение ионизированных молекул может достичь точки потенциальной кривой, лежащей за точкой диссоциации. Тогда возбужденная молекула диссоциирует с разрывом химической связи, а в спектре появляются ионы с меньшей массой образуются также и нейтральные осколки молекулы. Наименьшая энергия электронов, при которой происходит образование подобных новых ионов, называется потенциалом появления. Последний складывается из следующих величии 1) энергии разрываемой химической связи, 2) потенциала иопизации образовавшегося ионизированного осколка молекулы, 3) кинетической энергии и энергии возбуждения всех образовавшихся осколков. Найдено, что для большинства процессов третья составляющая мала (<0,5 < ). [c.103]


Смотреть страницы где упоминается термин Связь химическая ионная, кривая потенциальной: [c.9]    [c.78]    [c.19]   
Теоретическая неорганическая химия (1971) -- [ c.0 ]

Теоретическая неорганическая химия (1969) -- [ c.0 ]

Теоретическая неорганическая химия (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Потенциальная яма

ХИМИЧЕСКАЯ СВЯЗЬ Ионная связь

Химическая ионная

Химическая связь

Химическая связь ионная

Химическая связь связь

Химический связь Связь химическая



© 2024 chem21.info Реклама на сайте