Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метиловые аминокислот

    Без катализаторов гидролиз многих эфиров протекает очень медленно, иногда в течение нескольких лет, хотя некоторые сложные эфиры, например метиловый и этиловый эфиры муравьиной кислоты, метиловый и этиловый эфиры щавелевой кислоты, эфиры а-окси- и низших а-аминокислот и др., гидролизуются очень быстро. Скорость реакции значительно увеличивается добавками [c.529]


    В последнее время для этерификации аминокислот с успехом применяют хлористый тионил (Бреннер). К охлажденному раствору хлористого тионила в метиловом спирте прибавляют аминокислоту, которая постепенно переходит в раствор. При этом протекает следующая реакция  [c.357]

    Другой вариант использования метода ЯМР для определения оптической чистоты основан на использовании оптически активных растворителей в них различные химические сдвиги дают и энантиотопные атомы, имеющиеся в оптических антиподах [167]. Этим методом была определена оптическая чистота 2,2,2-трифтор-1-фенилэтанола с использованием (+)-а-фенилэтиламина в качестве растворителя, оптическая чистота аминов и метиловых эфиров а-аминокислот с использованием в качестве растворителя (—)-2,2,2-трифтор-Ь [c.164]

    Активированные эфиры. — Метиловые и этиловые эфиры N-замещенных аминокислот реагируют со свободной аминогруппой другого компонента очень медленно. Сильная электроноакцепторная группа, такая, как п-нитрофенил, ускоряет нуклеофильную атаку сложного эфира по аминогруппе и делает возможным пептидный синтез  [c.683]

    ОБРАЗОВАНИЕ СЛОЖНЫХ ЭФИРОВ. Карбоксильная группа аминокислоты легко этерифицируется обычными методами. Например, метиловые эфиры получают, пропуская сухой газообразный хлористый водород через раствор аминокислоты в метаноле. [c.395]

    К настоящему времени подобраны стационарные фазы, позволяющие разделять методом ГЖХ ГАС практически любого класса и решать самые сложные стрз ктурные проблемы, вплоть до установления оптической конфигурации молекул (например, аминокислот [164], изоирепоидных жирных кислот и их эфиров [269]. Получены необходимые для идентификации экспериментальные данные по параметрам удерживания характерных для нефтей летучих ГАС, в том числе тиолов [270], диалкилсульфидов [271], тиацикланов [272], аминов [273, 274], производных пиридина и хинолина [274—276], свободных жирных [277] и ароматических [278] кислот и их метиловых эфиров, фенолов [279, 280], кето-нов [281], спиртов [282] и т. д. Выведены корреляции между хроматографическим поведением и строением ГАС отдельных типов. Надежность идентификации чисто газохроматографическими средствами можно значительно повысить путем изучения так называемых спектров хроматографического удерживания [283]. На основе характеристик удерживания идентифицирован, например  [c.34]


    В общем случае это достигается этерификацией карбоксильной группы, подлежащей защите. Для получения метилового или этилового эфира обрабатывают аминокислоту метанолом или этанолом, насыщенным НС1 (этерификация по Фищеру). Однако обычно предпочитают эфиры, гидролиз которых легко провести в мягких условиях. Хотя эфиры омыляются основаниями гораздо легче, чем пептиды (поскольку алкоксиды — лучщие уходящие группы), используемые для этого щелочные условия нельзя применять для деблокирования полипептидов. Использование бензи-ловых эфиров позволяет удалять защитные группы при нейтральных условиях с помощью каталитического гидрирования. Бензи-ловые эфиры синтезируют из кислоты и бензилового спирта в присутствии кислоты или тиоиилхлорида (который переводит спирт в сульфохлорид, и уже последний замещается кислотой), [c.77]

    Это позволило определить строение аминокислоты, из которой получен данный метилтиогидантоин. Новые сведения о порядке чередования аминокислотных остатков в коротких пептидах были получены па основанни исследоваиия масс-спектров этиловых эфиров ацетилпептидов, аминоспиртов и диаминоспиртов [208, 209]. В работе Н. К. Кочеткова и сотрудников масс-спектрометрический метод использовался для определения размера цикла в метиловых эфирах моносахаридов [210], установления конфигураций гликозидной связи в метилглюкозидах [211] и выяснения места свободного гидроксила в частично метилированных моносахаридах [212, 213]. [c.124]

    Другой фермент — трипсин — эффективно катализирует гидролиз метиловых эфиров К-ацетилзамещенных -аминокислот типа НСН(МНС0СНз)С(0)0СНз также за счет сорбции гидрофобной субстратной группы Н на активном центре. Сравним кинетические харак- [c.44]

    Константы скорости второго порядка для ферментативного (химотрипсин) и щелочного гидролиза метиловых афиров некоторых карбоновых, в том числе а- -ацетия-1-аминокислот [21] [c.128]

    Ацилирование химотрипсина метиловыми эфирами а - -ацилзаме-щенных-/,-аминокислот. Характеристикой собственной (внутренней) реакционной способности составного нуклеофила активного центра будем считать константу скорости для некоторой модельной реакции, в которой боковые группы субстрата не принимают участия в сорбции на белке. Для того чтобы найти эту величину, проанализируем, как влияет изменение структуры отдельных субстратных фрагментов на общую скорость образорания ацилфермента  [c.158]

    С помощью линейных зависимостей типа Igk /Ks — n R можно описать реакционную способность метиловых эфиров также и других N-ацилзамещенных a-L-аминокислот (Val, Туг, Phe и др.), причем наклон сохраняет постоянное значение, равное примерно 0,6 [62]. Это означает, что гидрофобное взаимодействие с ферментом субстратного фрагмента R вносит аддитивный вклад в ускорение реакции, поскольку величина вклада не зависит от природы специфической боковой группы R в молекуле аминокислоты. [c.159]

    В итоге взаимосвязь структуры и реакционной способности метиловых эфиров N-ацилзамещенных a-L-аминокислот можно описать следующим общим уравнением  [c.161]

    Прямое кинетическое подтверждение образования промежуточных соединений и Х2 в катализе гидролиза эфиров N-aцилиpoвaнныx-L-аминокислот получено из анализа кинетики реакции на длинах волн поглощения промежуточных соединений ( 290 нм) [9]. Так, при смешивании раствора а-химртрипсина с метиловым эфиром Ы-ацетил-1-фенилаланина наблюдается быстрое (кинетически неразрешенное) спектральное изменение (по-видимому, образование первичного фермент-субстратного комплекса Х ), за которым следует медленная кинетика образования ацилфермента (рис. 64,а). В стационарной фазе реакции в условиях,, когда расходом субстрата можно пренебречь, концентрация ацилфермента сохраняется постоянной последующий расход субстрата приводит к- исчезновению в растворе промежуточных соединений (рис. 64,6) [9]. [c.198]

    При изучении термодинамики гидролиза ацил-химотрип-синов, образующихся при реакции метиловых эфиров Н-ацетил-Ь-аминокислот с а-химотрипсином [9], были получены активационные параметры, приведенные в табл. 10. Найти изокинетическую температуру для реакции деацилирования фермента. [c.255]

    Поместите в пробирку 3 капли 0,2 н. раствора аминоуксусной кислоты или гликокола (68). Добавьте 1 каплю 0,2%-ного раствора индикатора метилового красного (103). Убедитесь в том, что аминокислота не имеет кислой реакции. Зона перехода от красной окраски к желтой для метилового красного находится при pH 4,4—6,2. Сохраните полученный раствор для опыта 100. [c.101]

    Церий (IV) не очень чувствителен к органическим веществам. Це-риметрически определяют мышьяк (III), гексацианоферриат калия, иодид-ион, сурьму (III), олово (II), ванадий (IV) и др., органические кислоты (винную, лимонную, щавелевую), спирты, амины, фенолы, аминокислоты, углеводы, глицерин, глюкозу. Все вышеуказанные соединения окисляются стехиометрически при комнатной температуре или при нагревании. Карбоновые кислоты окисляются до воды, муравьиной кислоты и СОз, аскорбиновая кислота —- до дегидроас-корбиновой, фенолы и амины — до хинонов, производные гидразина-до азота. Титруют в кислом водном растворе, иногда нагревают до 45° С. В качестве индикатора применяют дифениламин, ферроин, дифенилбензидин (обратимые), метиловый красный, метиловый оранжевый (необратимые). Титруют также и потенциометрическим методом. [c.419]


    Когда хотят получить свободную аминокислоту или пептид, то в качестве восстанавливающего агента применяют триэтилсилан (т. кип. 107°С). Смесь кбз-1произ1водного (0,01 моль), триэтилсилана (0,04 моль), триэтиламина (4 капли) и хлористого палладия (50 мг) кипятят в течение 3 ч. Обра ювавшийся раствор фильтруют и разбавляют метиловым спиртом, который осаждает аминокислоту или пептид (Биркофер, [c.676]

    Полиаминокислоты. — Данный раздел посвящен главным образом синтетическим полипептидам, полученным полимеризацией производных отдельных аминокислот (гомополимеры) или в некоторых случаях двух или более компонентов. Эфиры глицина и аланина были полимеризованы, но в настоящее время предпочитают использовать в качестве мономеров N-кapбoк иaнгидpиды, известные также КЗ К ангидриды Лейяса IV. Лейхс (1906) лолучил соединения этого типа взаимодействием аминокислоты I с метиловым эфиром хлоругольной кислоты. При этом образуется Ы-карбметоксиаминокислота П, из которой после превращения в хлорангидрид III при перегонке в вакууме образуется Ы-карбоксиангидрид IV и элиминируется молекула хлористого метила  [c.711]

    Этерификация под действием СНзОН — НС1 Метиловые эфиры аминокислот Вайер, Рейтер и Борн (1957) Байер (1958) [c.270]

    Омыление -фталимидопропионитрила до -аланина. В круглодонной колбе емкостью 3 л смешивают 2 моля р-фталимидопропионитрила (неочищенный продукт предыдущей реакции) с 900 мл 20%-иой соляной кислоты и кипятят 5 ч с обратным холодильником. Образующаяся фталевая кислота примерно через 4 ч внезапно выпадает в осадок и служит причиной сильных толчков при кипении (колбу надо хорошо закрепить). Еще горячую реакционную смесь выливают в. стакан и дают охладиться при частом помешивании. Выпавшую фталевую кислоту отсасывают и тщательно промывают водой. Объединенные фильтраты упаривают досуха на кипящей водяной бане в вакууме водоструйного насоса и после этого еще 1 ч сушат в тех же условиях. К еще горячему остатку прибавляют 150 мл метилового спирта, тщательно перемешивают и отсасывают. Остаток на фильтре еще дважды обрабатывают таким же образом метиловым спиртом (порциями по 100 мл). Объединенные экстракты после охлаждения фильтруют, к фильтрату добавляют трибутиламин или диэтиламин до слабощелочной реакции. При достижении нзоэлектрической точки осаждается аминокислота. Ее отфильтровывают и промывают метиловым спиртом. Т. пл. 200 °С выход 80%, (в расчете на фталимид). [c.215]

    Для качественного определения 1—2 у аминокислоты применяют 0,57о-ный раствор иингидрина в метиловом спирте. [c.154]

    Капли водного илн спиртового раствора каждого из четырех перечисленных выше аминов наносят отдельно на полоску бумаги н производят хроматографирование, как описано выше. Для идентификации аминов рекомендуется тот же растворитель, что и для аминокислот н-бутиловый спирт—вода— уксусная кислота (4 5 1). Для определения положения пятен аминов на хроматограмме производят опрыскивание 0,1%-ным раствором иингидрина в метиловом спирте, как описано при определении аминокислот. [c.155]

    Этот синтез представляет собой первую часть реакции Соммлв (гл. 10 Альдегиды , разд. А.9). Если гидролиз комплекса, образуемого галогенпроизводным и гексаметилентетрамином, проводить в смеси этилового спирта и концентрированной соляной кислоты [73], реакция останавливается на стадии образования первичного амина. Этот метод. синтеза, таким образом, можно применять для получения первичных аминов вместо реакции Габриеля (разд. Б.2). Его с успехом применяют к первичным галогенпроизводным, и, поскольку иодиды реагируют лучше, чем хлориды или бромиды, при реакциях с последними добавляют иодистый натрий [74]. Этот метод с успехом использовался для получения простых алифатиче-ческих аминов [74], некоторых бензиламинов [75], а-аминокетонов [76], аминоалкинов [77], метиловых эфиров п-аминобензойной кислоты [78], а-аминоэфиров [791 и -аминокислот [80]. Выходы составляли 40—85%. [c.514]

    Этот обмен происходит, и часто с хорошими выходами, в случае М-ациламинокислот и при получении виниловых эфиров различных алифатических и ароматических карбоновых кислот. N-Ациламино-кислоты, например фталоилглицин или тозилглицин, превращаются в метиловые или этиловые эфиры под действием алкилформиата или алкилацетата [126]. Обычно в качестве катализаторов используют 96%-ную серную кислоту или моногидрат я-толуолсульфокислоты. Неацилированные аминокислоты, за исключением фенилаланина, [c.298]

    Ряд олигомеров а-аминокислот играет значительную роль в жизнедеятельности организма и некоторые из них применяют в медицинской практике. Так, метиловый эфир дипептида L-аспарагил-Ь-фенилаланина (аспартат, аспартам) используют при диабете как малокалорийный заменитель сахара (в 150 раз слаще глюкозы). Его производят синтетическим или микробиологическим путем конденсацией аспарагина и метилата фенилаланина  [c.38]

    ЕЮ реакцию 5-ацилтиогликолевой или тиосалициловой кислоты или их эфиров с натриевой солью аминокислоты можно закончить нагреванием при 80—85° или кипячением с обратным холодильником Б растворе метилового спирта в течение 1 час. Рас творитель отгоняют в вакууме, остаток растворяют в воде и смесь подкисляют, чтобы Продукт реакции выпал в осадок [336]. Такая методика в случае тиофенилового зфира позволяет получить 90% аналитически чистого карбобензилоксиглкцилаланн-на. Обычно в метаноле получают лучшие выходы, чем в водных растворах. Реакция тиолового эфира с аминокислотой в нейтральном растворе не идет, так как происходит образование кислоты, которая снижает концентрацию незаряженных аминогрупп и прекращает реакцию. Если в качестве буфера применять пиридин, то можно получить хорошие выходы прн кипячении с обратным холодильником в течение 1 час [336]. [c.274]

    Обычно амин диазотирует в водном растворе серной кислоты. Нерастворимые или нереакционноспособные амины диазо-тируют в растворе уксусной кислоти, а также метилового или этилопого спиртов, бутилнитритом и серной или соляной кислотой. Аминокислоты часто растворяют в растворах щелочей имеете с нитритом на1рия, и получсн1 ую смеСЕ. приливают к серной кислотс. [c.556]

    Остаток растворяют в 15—20-кратном количестве (по весу) ме-ти ювого спирта (примечание 6), раствор фильтруют и смещивают с избытком пиридина (примечание 7). После стояния в течение ночи выпадает свободная аминокислота. Ее отсасывают, хорошо промывают метиловыд с1Шртом н сущат. Выход 92—102 г (30—33% теоретич.). Если нужно получить продукт, не содержащий пиридина, то полученную по вышеописанному способу аминокислоту растворяют Б 200 мл теплой воды, раствор фильтруют, а фильтрат смещивают с 2 л метилового спирта (примечание 8). В маточных растворах остается менее 10 г аминокислоты, которую можно выделить выпариванием раствора досуха, обработкой остатка метиловым спиртом и повторным осаждением, как описано выше, [c.35]


Смотреть страницы где упоминается термин Метиловые аминокислот: [c.41]    [c.233]    [c.351]    [c.386]    [c.834]    [c.160]    [c.165]    [c.154]    [c.686]    [c.693]    [c.425]    [c.136]    [c.275]    [c.179]    [c.185]    [c.204]    [c.222]    [c.224]    [c.231]    [c.293]    [c.446]    [c.559]   
Кинетические методы в биохимическихисследованиях (1982) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Метиловые эфиры N-диэтилфосфатов аминокислот

ТФА-аминокислот эфиры метиловые

Циан метиловые эфиры аминокислот



© 2025 chem21.info Реклама на сайте