Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ректификация воздуха ректификационные колонны

Рис. 16 . Схема двухколонного аппарата Линде для ректификации воздуха /—нижняя ректификационная колонна 2—змеевик для сжатого воздуха 3—дроссельный вентиль Рис. 16 . Схема <a href="/info/637121">двухколонного аппарата</a> Линде для <a href="/info/125760">ректификации воздуха</a> /—<a href="/info/844310">нижняя ректификационная колонна</a> 2—змеевик для <a href="/info/93463">сжатого воздуха</a> 3—дроссельный вентиль

    Разделительный аппарат двойной р е к т и ф и к а ц и и. На рис. 527 приведена схема двухколонного разделительного аппарата двойной ректификации для разделения воздуха на кислород и азот и получения газообразного кислорода. Сжатый и охлажденный до состояния насыщения или даже частично сжиженный воздух поступает через трубку в змеевик 6, где конденсируется. Тепло от воздуха отнимается жидкостью, испаряющейся в испарителе 7. Сжиженный воздух из змеевика проходит через расширительный вентиль 5 и поступает в первую (нижнюю) ректификационную колонну Л. В колонне он ст кает по тарелкам вниз и соприкасается с парами, образующимися в испарителе 7, обогащаясь при этом кислородом. Попадая в конце концов в испаритель в виде жидкости, обогащенной кислородом до содержания 40—60% Оз, он частично испаряется вследствие теплообмена с воздухом, проходящим через змеевик 6. Образовавшиеся пары поднимаются вверх, промываются [c.760]

    Расчет процессов ректификации. Расчет процессов ректификации основывается на использовании уравнений материального и теплового балансов, а также соотношений, описывающих структуру потоков взаимодействующих фаз и кинетику массообмена между ними. В месте подачи исходной смеси в ректификационную колонну (и в местах боковых отборов) соотношение материальных потоков скачкообразно изменяется. Поэтому уравнения материального и теплового балансов записываются раздельно для каждой части колонны между соседними точками ввода или отбора материальных потоков (для колонны без боковых отборов — для укрепляющей и исчерпывающей частей колонны). Так как процесс ректификации проводится при адиабатических условиях (теплообмен стенок аппаратов с окружающим воздухом при расчетах обычно учитывают введением поправок), тепловой баланс выражается уравнением (V. 94)  [c.550]

    В связи с вышеизложенным очевидно, что при работе с включенной колонной сырого аргона совершенно недопустимы резкие колебания уровней жидкости, сопротивлений аппаратов, давлений, концентраций продуктов разделения. Кроме того, должны быть повышены требования к качеству осушки воздуха от влаги и очистки от углекислоты, регулированию смазки компрессоров и детандеров, работе масляных фильтров и т. д., так как попадание влаги, двуокиси углерода и масла может привести к изменению процесса ректификации в ректификационных колоннах и снижению коэффициента извлечения аргона. [c.104]


    МПа, очищается от пыли, двуокиси углерода и водяных паров и подается в теплообменник /, где охлаждается продуктами ректификации - кислородом и азотом. В змеевиковом кипятильнике 2 поступающий воздух частично конденсируется, отдавая тепло жидкому кислороду, кипящему снаружи змеевика. Пройдя дроссельный вентиль 3, где давление падает примерно до 0,13 МПа, частично сконденсированный воздух дополнительно охлаждается, и на верхнюю тарелку ректификационной колонны 4 поступает практически смесь жидкого и парообразного воздуха. В процессе ректификации высококи-пящий компонент (кислород) конденсируется и собирается в кипятильнике 2. Низкокипящий компонент (азот) с примесью 7-10 % кислорода в парообразном состоянии выводится через верх ректификационной колонны. Таким образом, однократная ректификация позволяет получить чистый кислород и технический азот. [c.145]

    Чрезвычайно важным фактором является термоизоляция. Можно высказать теоретическое положение, находящееся в полном соответствии с практикой, что потеря тепла или конденсация, происходящие в рабочем пространстве, понижают разделительную эффективность колонны. Поэтому лучше всего ректификационную колонну окружить откачанным до высокого вакуума и посеребренным внутри стеклянным кожухом он может быть съемным, поскольку тонкий слой воздуха между кожухом и колонной не ухудшает его действия. В колонне всегда необходимо иметь узкую полосу для наблюдения за рабочим пространством. При более высоких температурах ректификации (100—350° ) этот способ термической изоляции уже недостаточен вследствие возрастающих потерь за счет излучения. В этом случае внутри вакуумного кожуха следует поместить тонкий, блестящий металлический отражатель таким способом можно достигнуть практически полной термоизоляции даже при 350°. Вместе с тем следует заранее позаботиться о напряжениях, возникающих в стеклянном кожухе. В случае больших колонн часто ограничиваются тем, что окружают их изоляционным материалом, поверх которого надевают кожух, который при желании можно разделить на несколько участков температуру кожуха благодаря автоматически регулируемому электрическому обогреву, циркулирующему маслу и т. п. поддерживают на несколько градусов ниже температуры колонны [582]. [c.483]

    Разделительный аппарат одинарной ректификации. На рис. 19-19 показана схема простого цикла с дросселированием, в котором применен разделительный аппарат одинарной ректификации. Аппарат представляет собой обычную ректификационную колонну, куб которой обогревается сжатым воздухом, а исходная смесь подается на верх колонны. Сжатый и охлажденный в теплообменнике 1 воздух проходит по змеевику 2 и, отдавая тепло кипящему в кубе жидкому кислороду, частично конденсируется. Затем воздух дросселируется в вентиле 3 до абсолютного давления 1,2—1,3 ат и подается на верх колонны 4. В результате ректификации в кубе собирается ВК (кислород), из верхней части колонны отводится НК (азот). [c.690]

    Частично сконденсированный воздух, пройдя через дроссельный вентиль 3, еще больше охлаждается. Смесь жидкого и парообразного воздуха поступает на верхнюю тарелку ректификационной колонны 4. На тарелках колонны происходит обычный процесс ректификации при многократном взаимодействии стекающей жидкости с поднимающимися снизу парами из последних конденсируется кислород (высококипящий компонент), а из жидкости испаряется азот (низкокипящий компонент). В результате из верхней части колонны удаляются пары азота, близкие к равновесию с подаваемым в колонну воздухом и поэтому содержащие примесь кислорода (не более 7—10%). В кипятильник колонны поступает чистый кислород. Как указывалось, кислород и технический азот направляются в теплообменник 1 для охлаждения сжатого в компрессоре воздуха. [c.518]

    При разделении воздуха часть процесса ожижения, протекающего в отделителе жидкости и дросселе (показанная штриховой линией), осуществляется совместно с процессом ректификации. Сжатый воздух после теплообменника (точка 3 ) поступает на дросселирование через змеевик, расположенный в испарителе ректификационной колонны. В змеевике сжатый воздух дополнительно охлаждается и ожижается, так как температура его кипения выше температуры в испарителе, где давление над жидкостью лишь немного превышает атмосферное (на значение сопротивления теплообменника потокам, выходящим из колонны). Полученный жидкий воздух (точка 3) дросселируется до давления в колонне (точка 4) и в качестве разделяемой смеси и флегмы подается на верхнюю тарелку колонны. Таким образом, змеевик служит как бы продолжением теплообменника. Тепло испарения Qy передается жидкости в нижней части колонны от воздуха, который за счет этого ожижается. Испаритель, следовательно, играет и роль конденсатора для флегмы. [c.243]

    К комплексам с рекуперацией тепла условно отнесем все ректификационные комплексы, в которых снижение энергозатрат на разделение достигается в результате теплообмена между потоками и подвода тепла и холода на промежуточных изотермах (между изотермами верха и низа колонны). Такие комплексы могут включать одну или несколько ректификационных колонн. К ним относятся комплексы с тепловым насосом, с промежуточным подводом холода и тепла, с несколькими вводами сырья при различных температурах и составах равновесных фаз и комплексы с теплообменом между конденсирующимися и испаряющимися потоками различных ректификационных колонн. Возможны и некоторые другие ректификационные комплексы, относящиеся к этому же типу, например, конденсационно-испарительный комплекс, разрезная колонна [44], колонны двукратной и ступенчатой ректификации с двумя и более уровнями давления и с теплообменом между конденсирующимися и испаряющимися потоками, используемые, например, при разделении воздуха [106]. [c.194]


    Азот в литосфере находится главным образов в виде сильно рассеянных отходов жизнедеятельности (-0,01%). Азот получают ректификацией жидкого воздуха, в котором его содержится 78% по объему. Азот кипит при атмосферном давлении и температуре — 196 °С, а кислород при —188 °С. Поэтому азот улетает, а кислород остается жидким в нижней части (кубе) ректификационной колонны. С помощью чистого азота создают инертную атмосферу во многих металлургических производствах. Жидкий азот, хранимый и транспортируемый в сосудах Дьюара с вакуумированными стенками, необходим для создания низких температур. При температуре жидкого азота измеряют низкотемпературную теплоемкость, вымораживают различные примеси в газах, изучают сверхпроводимость новых материалов на основе медно-бариево-редкоземельных керамик и т. д. [c.152]

    Регулирование процесса ректификации и теплового режима сводится к поддержанию в заданных пределах уровней жидкости, сопротивлений в ректификационных колоннах и составов продуктов разделения воздуха. Состав продуктов разделения воздуха в нижней колонне регулируют азотным дроссельным вентилем, изменяя количество отбираемой жидкости из карманов на орошение верхней колонны. При этом изменяется и состав кубовой жидкости вследствие изменения количества флегмы, поступающей на орошение нижней колонны. При уменьшении отбора азотной флегмы из карманов нижней колонны концентрация азота в ней повышается. Количество флегмы, стекающей в нижнюю колонну, увеличивается, концентрация кислорода в кубовой жидкости уменьшается, а уровень жидкости в кубе возрастает. При этом дроссельный вентиль кубовой жидкости приоткрывают, чтобы уровень в кубе оставался в заданных пределах. Концентрация азота, отходящего из верхней колонны, зависит от количества и концентрации азотной флегмы, поступающей из карманов нижней колонны. При высокой концентрации азотной флегмы, но недостаточном ее количестве, невозможно добиться высокой чистоты отходящего азота, поэтому азотный дроссельный [c.117]

    Процесс заканчивается ректификацией жидкого воздуха, в двойной ректификационной колонне. [c.92]

    Кумол окисляется воздухом в реакторе 1 с высокой эффективностью - конверсия более 95 % (рис. 37). Образующийся кумилгидропероксид концентрируется в ректификационной колонне 2 и расщепляется более чем на 98 % в присутствии кислотного катализатора в колонне 3 с образованием фенола и ацетона. После отделения от катализатора реакционная смесь разделяется ректификацией в колоннах 4-8. а-Метилстирол выделяют в качестве целевого продукта или гидрируют с получением кумола, который возвращают в реактор окисления. Фенол (и при необходимости ацетофенон) извлекают также из отходящих углеводородов, которые используют как топливо. Небольшое количество сточных вод проходит предварительную очистку, которая обеспечивает высокую эффективность биологической очистки на общезаводских очистных сооружениях. [c.342]

    Процесс выделения водорода из такой смеси отличается от разделения воздуха на кислород и азот. Ректификация кок сового газа необязательна, так как температура кипения водорода значительно ниже температур кипения всех других компонентов смеси, и потому соответствующего понижения температуры смеси достаточно для того, чтобы сконденсировать эти компоненты и, таким образом, уменьшить содержание примесей в газе до требуемых пределов. При проведении же процесса ректификации потребовалось бы применение гораздо более низких температур, так как ректификационную колонну надо было бы орошать более летучим компонентом, в данном случ.зе жидким водородом, критическая температура которого равна 33,3°К. В описываемом процессе температуры ниже 60°К не применяются, следовательно, рабочая температура всегда выше кр итической тем пер ату р ь водорода. [c.366]

    Принципиально возможный способ повышения сте-, пени чистоты азота и увеличения выхода кислорода при разделении воздуха заключается в питании ректификационной колонны исходной смесью, более богатой азотом, чем обычный воздух. Этот принцип используется в установках двойной ректификации для разделения воздуха. [c.518]

    Полное разделение воздуха на кислород и азот возможно достичь лишь при применении процесса ректификации. Коренным отличием ректификации сжиженных газов от ректификации обычных жидкостей является то, что в данном случае процесс проводится при очень низких температурах и, кроме того, продукты ректификации целиком или в большей части получаются в виде газов. Но несмотря на это, закономерности процесса ректификации сжиженных газов в точности соответствуют тем закономерностям, которые были, рассмотрены в главе X, а поэтому и методика расче-танная применительно к .перегонке та ректификационных колонн, разрабо-жидкостей, целиком применима и к ректификации сжиженных газов. [c.668]

    Каждая установка для разделения воздуха принципиально имеет следующую схему. Сжатый компрессором воздух охлаждается в теплообменнике при помощи отходящих продуктов разделения. Охлажденный в теплообменнике воздух после дросселирования поступает в виде жидкости в ректификационную колонну, где и происходит разделение его на кислород и азот. Для разделения воздуха применяют разделительные аппараты одинарной и двойной ректификации. [c.722]

    Основное отличие ректификации сжиженных газов от ректификации обычных жидкостей состоит о то.м, что она проводится при очень низких температурах, и продукты разделения получаются в большинстве случаев в газообразном виде (нанример, для воздуха— азот и кислород). Закономерности процессов ректификации сжиженных газов соответствуют тем же закономерностям, что и для ректификации обычных смесей, и методика расчета ректификационных колонн остается такой же. Для разделения воздуха применяются аппараты (однократной и двукратной ректификации). [c.368]

    Получение. В промышленности азот получают ректификацией жидкого воздуха. Т. кип. жидких О2 и N2 соответственно равны —183°С и —196°С. В результате ректификации получают газообразный азот и в нижней части ректификационной колонны (кубе) остается жидкий кислород (содержащий 3% Аг, т. кип. которого близка к т. кип. О2). [c.393]

    Колонна однократной ректификации приведена на рис. 49. Сжатый и предварительно охлажденный воздух проходит через змеевик, погруженный в сосуд (куб) с кипящим жидким кислородом. В змеевике охлажденный воздух частично конденсируется, испаряя некоторое количество кислорода из куба. На выходе из змеевика воздух дросселируется, его давление снижается до 0,012. ... .. 0,013 МПа. Затем воздух поступает на верхнюю тарелку ректификационной колонны, часть его испаряется, а большая часть стекает по тарелкам в нижнюю часть колонны. Проходя ряд тарелок, воздух [c.47]

    Принципиальная схема получения 1,2,4-трихлорбензола приведена на рис. 26 [146, с. 403]. Смесь гексахлорана и трихлорбензола (1 1) подогревают и направляют на удаление метанола в колонну, где при 60—80 "С отгоняют пары метанола в воды, которые затем нейтрализуют и отводят с установки (на схеме не показана). Суспензия нетоксичных гекса-хлоранов в трихлорбензоле-сырце поступает в реактор 1, снаб-л енный выносным подогревателем, где в качестве теплоносителя используют дитолилэтан. Процесс, протекающий при 240— 260 °С, ускоряют небольшими добавками хлора (мольное соотношение гексахлоран хлор=20 1), что допускает к тому же некоторое повышение температуры. В ректификационной колонне 2, орошаемой трихлорбензолом-сырцом, гексахлоран отделяют от трихлорбензола. В конденсаторе смешения 3 орошаемый охлажденный до 30 °С трихлорбензол отделяют от НС1. Этому способствует подача осушенного воздуха в нижнюю часть коН денсатора смешения. Выходящий из конденсатора 3 НС1 (1,36 т/т 1,2,4-трихлорбензола) направляют на абсорбцию для получения 30%-й НС1 (кислоты). Трихлорбензол-сырец далее разделяется в секции ректификации. В колонне 4 отделяют высококипящие остатки (тетра-, пента- и гексахлорбензолы), направляемые на сжигание в колонне 5 — моно- и дихлорбензолы, а в колонне 6 — товарный 1,2,4-трихлорбензол. В нижней части из паровой фазы отбирается смесь 1,2,4- и 1,2,3-трихлорбензолов (60—80% первого) в количестве 1,25 т на 1 т целевого продукта. Из куба колонны б выводят высококипящие компоненты и смолы, которые возвращают в колонну 4. Смесь трихлор- [c.139]

    Несмотря на то, что производство кислорода основано на одном и том же принципе — низкотемпературной ректификации воздуха — вариантов этого процесса насчитывается много. Они отличаются главным образом способом очистки воздуха от таких примесей, как СО2, Н2О, способом получения холода, давлением, типом применяемых ректификационных колонн. [c.48]

    Ректификация воздуха — это многократно повторяющийся процесс конденсации менее летучего компонента (кислорода) и испарение более летучего компонента (азота) в слоях жидкой смеси азота и кислорода, находящейся на тарелках ректификационной колонны. [c.40]

    Свежий и вернувшийся из реакции непрореагировавший изопропилбензол, очищенный с помощью гидрирования в аппарате 3 от побочного продукта реакции а-метилстирола, смешивают в аппарате 1 в соотношении 1 4 и в виде водной эмульсии направляют в аппарат, для окисления 6. В качестве эмульгаторов применяют натриевые соли стеариновой кислоты или лаурилсульфокислоты. Окисление производится воздухом в водноэмульсионной среде при 130° С и энергичном перемешивании. Полученную в результате окисления гидроперекись изопропилбензола направляют в реактор 9, где она разлагается разбавленной серной кислотой. Из реактора 9 жидкость попадает в сепаратор 11, в котором углеводородный слой отделяют от сернокислотного слоя. Сернокислотный слой возвращают в реактор 9, а углеводородный слой после промывки водой направляют на ректификацию. В ректификационной колонне 12 [c.283]

    Свежий и вернувшийся из реакции непрореагировавший изопропилбен зол, очищенный с помош,ью гидрирования в аппарате 3 от побочного продукта реакции а-метилстирола, смешивают в аппарате 1 в соотношении 1 4 и в виде водной эмульсии направляют в аппарат для окисления 6. В качестве эмульгаторов применяют натриевые соли стеариновой кислоты или лаурилсульфокислоты. Окисление производится воздухом в водноэмульсионной среде при 130 °С и энергичном перемешивании. Полученную в результате окисления гидроперекись изопропилбензола направляют в реактор 9, где она разлагается разбавленной серной кислотой. Из реактора 9 жидкость попадает в сепаратор 11, в котором углеводородный слой отделяют от сернокислотного слоя. Сернокислотный слой возвращают в реактор 9, а углеводородный слой после промывки водой направляют на ректификацию, В ректификационной колонне 12 отгоняется ацетон в колонне 13, работающей при пониженном давлении, отделяется изопропилбензол и побочный продукт реакции — а-метилстирол. Эту фракцию для удаления следов фенола обрабатывают в аппарате 10 водным раствором щелочи. Кубовую жидкость из колонны 13 направляют в колонну 14, также работающую в вакууме. В колонне 14 фенол отделяется от побочного продукта реакции — ацетофенона. Фенол из дистиллята кристаллизуется в приемнике. В кубовом остатке находится ацетофенон. Конверсия изопропилбензола за один цикл около 25%, Выход фенола (на изопропилбензол) около 93%. [c.235]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]

    Схема реакторного блока современной установки каталитического крекинга приведена на рис. 28. Нагретое сырье после гидроочистки смешивается с рециркулятом и водяным паром и подается в узел смешения 2 прямоточного лифта-реактора I. Сырье контактирует с регенерированным горячим катализатором в прямотоке, где происходят его испарение и основная стадия химического превращения. Продукты реакции вместе с катализатором поступают в отстойную зону 8 реактора 7, играющую роль бункера-сепаратора. После отделения от продуктов реакции основной массы катализатора газы и перегретые пары углеводородов с водяным паром проходят циклоны и направляются в ректификационную колонну 10 для разделения. Отстоявшаяся катализаторная масса поступает в отпарную зону 9 реактора, где нефтяные пары десорбцией водяным паром отделяются с поверхности катализатора. Далее закоксо-ванный катализатор по наклонному катализаторопрово-ду поступает в регенератор 4, где в псевдоожиженном слое происходит выжиг кокса. В низ регенератора подают воздух, который может предварительно нагреваться в топке 3. Дымовые газы с верха регенератора через систему циклонов направляются в электрофильтры 6 и котел-утилизатор 5. Регенерированный катализатор поступает в узел смешения с сырьем. Продукты реакции в виде перегретых паров направляются в нижнюю часть ректификационной колонны, где в результате контакта с орошением происходит снятие тепла перегрева и улавливание части катализатора, унесенного из реактора. Далее газы, водяные пары и пары продуктов реакции поступают в концентрационную часть колонны на ректификацию, а остаток выводится из нижней части колонны. Образующийся шлам с низа колонны [c.76]

    В то же время вакуум-ректификация имеет ряд существенных недостатков. К недостаткам следует отнести в первую очередь прососы воздуха. Прососы воздуха влияют на скорость паров в колонне, что ухудщает погоноразделение, и приводит к существенным потерям терпенов, а также вызывает окислительные процессы, которые сопровождаются отложением в ректификационных колоннах твердых продуктов окисления. [c.131]

    Атмосферный воздух поступает в турбокомпрессор I, в котором сжимается до р = 0,22 МПа. Теплота сжатия отводится в теплообменнике 2, и затем поток воздуха дополнительно охлаждается в теплообменнике 3. В теплообменнике 2 в качестве хладагента подается хладон, который циркулирует в замкнутом цикле и, в свою очередь, охлаждается СПГ. После теплообменника 3 поток воздуха направляется в адсорбер 4, в котором очшцается от влаги. Очистка воздуха от СО2 производится в низкотемпературном адсорбере 6, куда воздух поступает после дополнительного охлаждения в теплообменнике 5. Окончательное охлаждение воздуха производится в теплообменнике 7, пройдя который он поступает в первую ректификационную колонну 8. Эта колонна по своему назначению соответствует нижней ректификационной колонне в обычной колонне двукратной ректификации, но в отличие от нее работает не при давлении 0,55-0,60 МПа, а под давлением около 0,15 МПа. [c.397]

    Ректификация жидкого воздуха протекает так же, как и ж дких смесш при высоких температурах. На верх ректификационной колонны подается более холодная азотная флегма (96 К.). Снизу поступает на тарелки и барботирует через жидкость воздух (пары при 100—105 К). Поток пара, двигаясь вверх, обогащается азотом. Поток жидкости, стекая вниз, обогащается кислородом. [c.121]


Смотреть страницы где упоминается термин Ректификация воздуха ректификационные колонны: [c.31]    [c.437]    [c.7]    [c.234]    [c.190]    [c.753]    [c.38]    [c.509]    [c.198]    [c.774]    [c.62]   
Получение кислорода Издание 5 1972 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Колонна ректификационная

Ректификации воздуха

Ректификационная колонна колонна

Ректификационные колонны колонны ректификации

Ректификация колонны



© 2024 chem21.info Реклама на сайте